mirror of
https://forge.sourceware.org/marek/gcc.git
synced 2026-02-22 03:47:02 -05:00
1132 lines
31 KiB
C++
1132 lines
31 KiB
C++
/* Generic routines for manipulating SSA_NAME expressions
|
|
Copyright (C) 2003-2026 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "gimple-iterator.h"
|
|
#include "stor-layout.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "tree-ssa.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "value-query.h"
|
|
#include "value-range-storage.h"
|
|
|
|
/* Rewriting a function into SSA form can create a huge number of SSA_NAMEs,
|
|
many of which may be thrown away shortly after their creation if jumps
|
|
were threaded through PHI nodes.
|
|
|
|
While our garbage collection mechanisms will handle this situation, it
|
|
is extremely wasteful to create nodes and throw them away, especially
|
|
when the nodes can be reused.
|
|
|
|
For PR 8361, we can significantly reduce the number of nodes allocated
|
|
and thus the total amount of memory allocated by managing SSA_NAMEs a
|
|
little. This additionally helps reduce the amount of work done by the
|
|
garbage collector. Similar results have been seen on a wider variety
|
|
of tests (such as the compiler itself).
|
|
|
|
Right now we maintain our free list on a per-function basis. It may
|
|
or may not make sense to maintain the free list for the duration of
|
|
a compilation unit.
|
|
|
|
External code should rely solely upon HIGHEST_SSA_VERSION and the
|
|
externally defined functions. External code should not know about
|
|
the details of the free list management.
|
|
|
|
External code should also not assume the version number on nodes is
|
|
monotonically increasing. We reuse the version number when we
|
|
reuse an SSA_NAME expression. This helps keep arrays and bitmaps
|
|
more compact. */
|
|
|
|
|
|
/* Version numbers with special meanings. We start allocating new version
|
|
numbers after the special ones. */
|
|
#define UNUSED_NAME_VERSION 0
|
|
|
|
unsigned int ssa_name_nodes_reused;
|
|
unsigned int ssa_name_nodes_created;
|
|
|
|
#define FREE_SSANAMES(fun) (fun)->gimple_df->free_ssanames
|
|
#define FREE_SSANAMES_QUEUE(fun) (fun)->gimple_df->free_ssanames_queue
|
|
|
|
/* Return TRUE if NAME has global range info. */
|
|
|
|
inline bool
|
|
range_info_p (const_tree name)
|
|
{
|
|
return SSA_NAME_RANGE_INFO (name);
|
|
}
|
|
|
|
/* Return TRUE if R fits in the global range of NAME. */
|
|
|
|
inline bool
|
|
range_info_fits_p (tree name, const vrange &r)
|
|
{
|
|
gcc_checking_assert (range_info_p (name));
|
|
vrange_storage *mem = SSA_NAME_RANGE_INFO (name);
|
|
return mem->fits_p (r);
|
|
}
|
|
|
|
/* Allocate a new global range for NAME and set it to R. Return the
|
|
allocation slot. */
|
|
|
|
inline void *
|
|
range_info_alloc (tree name, const vrange &r)
|
|
{
|
|
vrange_storage *mem = ggc_alloc_vrange_storage (r);
|
|
SSA_NAME_RANGE_INFO (name) = mem;
|
|
return mem;
|
|
}
|
|
|
|
/* Free storage allocated for the global range for NAME. */
|
|
|
|
inline void
|
|
range_info_free (tree name)
|
|
{
|
|
vrange_storage *mem = SSA_NAME_RANGE_INFO (name);
|
|
ggc_free (mem);
|
|
}
|
|
|
|
/* Return the global range for NAME in R. */
|
|
|
|
inline void
|
|
range_info_get_range (const_tree name, vrange &r)
|
|
{
|
|
SSA_NAME_RANGE_INFO (name)->get_vrange (r, TREE_TYPE (name));
|
|
}
|
|
|
|
/* Set the global range for NAME from R. Return TRUE if successfull,
|
|
or FALSE if we can't set a range of NAME's type. */
|
|
|
|
inline bool
|
|
range_info_set_range (tree name, const vrange &r)
|
|
{
|
|
if (!range_info_p (name) || !range_info_fits_p (name, r))
|
|
{
|
|
if (range_info_p (name))
|
|
range_info_free (name);
|
|
|
|
return range_info_alloc (name, r);
|
|
}
|
|
else
|
|
{
|
|
SSA_NAME_RANGE_INFO (name)->set_vrange (r);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* Initialize management of SSA_NAMEs to default SIZE. If SIZE is
|
|
zero use default. */
|
|
|
|
void
|
|
init_ssanames (struct function *fn, int size)
|
|
{
|
|
if (!size)
|
|
vec_alloc (SSANAMES (fn), 50);
|
|
else
|
|
vec_safe_reserve (SSANAMES (fn), size, true);
|
|
|
|
/* Version 0 is special, so reserve the first slot in the table. Though
|
|
currently unused, we may use version 0 in alias analysis as part of
|
|
the heuristics used to group aliases when the alias sets are too
|
|
large.
|
|
|
|
We use vec::quick_push here because we know that SSA_NAMES has at
|
|
least 50 elements reserved in it. */
|
|
SSANAMES (fn)->quick_push (NULL_TREE);
|
|
FREE_SSANAMES (fn) = NULL;
|
|
FREE_SSANAMES_QUEUE (fn) = NULL;
|
|
|
|
fn->gimple_df->ssa_renaming_needed = 0;
|
|
fn->gimple_df->rename_vops = 0;
|
|
}
|
|
|
|
/* Finalize management of SSA_NAMEs. */
|
|
|
|
void
|
|
fini_ssanames (struct function *fn)
|
|
{
|
|
unsigned i;
|
|
tree name;
|
|
/* Some SSA names leak into global tree data structures so we can't simply
|
|
ggc_free them. But make sure to clear references to stmts since we now
|
|
ggc_free the CFG itself. */
|
|
FOR_EACH_VEC_SAFE_ELT (SSANAMES (fn), i, name)
|
|
if (name)
|
|
SSA_NAME_DEF_STMT (name) = NULL;
|
|
vec_free (SSANAMES (fn));
|
|
vec_free (FREE_SSANAMES (fn));
|
|
vec_free (FREE_SSANAMES_QUEUE (fn));
|
|
}
|
|
|
|
/* Dump some simple statistics regarding the re-use of SSA_NAME nodes. */
|
|
|
|
void
|
|
ssanames_print_statistics (void)
|
|
{
|
|
fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes allocated:",
|
|
SIZE_AMOUNT (ssa_name_nodes_created));
|
|
fprintf (stderr, "%-32s" PRsa (11) "\n", "SSA_NAME nodes reused:",
|
|
SIZE_AMOUNT (ssa_name_nodes_reused));
|
|
}
|
|
|
|
/* Verify the state of the SSA_NAME lists.
|
|
|
|
There must be no duplicates on the free list.
|
|
Every name on the free list must be marked as on the free list.
|
|
Any name on the free list must not appear in the IL.
|
|
No names can be leaked. */
|
|
|
|
DEBUG_FUNCTION void
|
|
verify_ssaname_freelists (struct function *fun)
|
|
{
|
|
if (!gimple_in_ssa_p (fun))
|
|
return;
|
|
|
|
auto_bitmap names_in_il;
|
|
|
|
/* Walk the entire IL noting every SSA_NAME we see. */
|
|
basic_block bb;
|
|
FOR_EACH_BB_FN (bb, fun)
|
|
{
|
|
tree t;
|
|
/* First note the result and arguments of PHI nodes. */
|
|
for (gphi_iterator gsi = gsi_start_phis (bb);
|
|
!gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
gphi *phi = gsi.phi ();
|
|
t = gimple_phi_result (phi);
|
|
bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
|
|
|
|
for (unsigned int i = 0; i < gimple_phi_num_args (phi); i++)
|
|
{
|
|
t = gimple_phi_arg_def (phi, i);
|
|
if (TREE_CODE (t) == SSA_NAME)
|
|
bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
|
|
}
|
|
}
|
|
|
|
/* Then note the operands of each statement. */
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
|
|
!gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
ssa_op_iter iter;
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, SSA_OP_ALL_OPERANDS)
|
|
bitmap_set_bit (names_in_il, SSA_NAME_VERSION (t));
|
|
}
|
|
}
|
|
|
|
/* Now walk the free list noting what we find there and verifying
|
|
there are no duplicates. */
|
|
auto_bitmap names_in_freelists;
|
|
if (FREE_SSANAMES (fun))
|
|
{
|
|
for (unsigned int i = 0; i < FREE_SSANAMES (fun)->length (); i++)
|
|
{
|
|
tree t = (*FREE_SSANAMES (fun))[i];
|
|
|
|
/* Verify that the name is marked as being in the free list. */
|
|
gcc_assert (SSA_NAME_IN_FREE_LIST (t));
|
|
|
|
/* Verify the name has not already appeared in the free list and
|
|
note it in the list of names found in the free list. */
|
|
gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t)));
|
|
bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t));
|
|
}
|
|
}
|
|
|
|
/* Similarly for the names in the pending free list. */
|
|
if (FREE_SSANAMES_QUEUE (fun))
|
|
{
|
|
for (unsigned int i = 0; i < FREE_SSANAMES_QUEUE (fun)->length (); i++)
|
|
{
|
|
tree t = (*FREE_SSANAMES_QUEUE (fun))[i];
|
|
|
|
/* Verify that the name is marked as being in the free list. */
|
|
gcc_assert (SSA_NAME_IN_FREE_LIST (t));
|
|
|
|
/* Verify the name has not already appeared in the free list and
|
|
note it in the list of names found in the free list. */
|
|
gcc_assert (!bitmap_bit_p (names_in_freelists, SSA_NAME_VERSION (t)));
|
|
bitmap_set_bit (names_in_freelists, SSA_NAME_VERSION (t));
|
|
}
|
|
}
|
|
|
|
/* If any name appears in both the IL and the freelists, then
|
|
something horrible has happened. */
|
|
bool intersect_p = bitmap_intersect_p (names_in_il, names_in_freelists);
|
|
gcc_assert (!intersect_p);
|
|
|
|
/* Names can be queued up for release if there is an ssa update
|
|
pending. Pretend we saw them in the IL. */
|
|
if (names_to_release)
|
|
bitmap_ior_into (names_in_il, names_to_release);
|
|
|
|
/* Function splitting can "lose" SSA_NAMEs in an effort to ensure that
|
|
debug/non-debug compilations have the same SSA_NAMEs. So for each
|
|
lost SSA_NAME, see if it's likely one from that wart. These will always
|
|
be marked as default definitions. So we loosely assume that anything
|
|
marked as a default definition isn't leaked by pretending they are
|
|
in the IL. */
|
|
for (unsigned int i = UNUSED_NAME_VERSION + 1; i < num_ssa_names; i++)
|
|
if (ssa_name (i) && SSA_NAME_IS_DEFAULT_DEF (ssa_name (i)))
|
|
bitmap_set_bit (names_in_il, i);
|
|
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
auto_bitmap all_names;
|
|
bitmap_set_range (all_names, UNUSED_NAME_VERSION + 1, num_ssa_names - 1);
|
|
bitmap_ior_into (names_in_il, names_in_freelists);
|
|
|
|
/* Any name not mentioned in the IL and not in the feelists
|
|
has been leaked. */
|
|
EXECUTE_IF_AND_COMPL_IN_BITMAP(all_names, names_in_il,
|
|
UNUSED_NAME_VERSION + 1, i, bi)
|
|
gcc_assert (!ssa_name (i));
|
|
}
|
|
|
|
/* Move all SSA_NAMEs from FREE_SSA_NAMES_QUEUE to FREE_SSA_NAMES.
|
|
|
|
We do not, but should have a mode to verify the state of the SSA_NAMEs
|
|
lists. In particular at this point every name must be in the IL,
|
|
on the free list or in the queue. Anything else is an error. */
|
|
|
|
void
|
|
flush_ssaname_freelist (void)
|
|
{
|
|
/* If there were any SSA names released reset the SCEV cache. */
|
|
if (! vec_safe_is_empty (FREE_SSANAMES_QUEUE (cfun)))
|
|
scev_reset_htab ();
|
|
vec_safe_splice (FREE_SSANAMES (cfun), FREE_SSANAMES_QUEUE (cfun));
|
|
vec_safe_truncate (FREE_SSANAMES_QUEUE (cfun), 0);
|
|
}
|
|
|
|
/* Initialize SSA_NAME_IMM_USE_NODE of a SSA NAME. */
|
|
|
|
void
|
|
init_ssa_name_imm_use (tree name)
|
|
{
|
|
use_operand_p imm;
|
|
imm = &(SSA_NAME_IMM_USE_NODE (name));
|
|
imm->use = NULL;
|
|
imm->prev = imm;
|
|
imm->next = imm;
|
|
imm->loc.ssa_name = name;
|
|
}
|
|
|
|
/* Return an SSA_NAME node for variable VAR defined in statement STMT
|
|
in function FN. STMT may be an empty statement for artificial
|
|
references (e.g., default definitions created when a variable is
|
|
used without a preceding definition). If VERISON is not zero then
|
|
allocate the SSA name with that version. */
|
|
|
|
tree
|
|
make_ssa_name_fn (struct function *fn, tree var, gimple *stmt,
|
|
unsigned int version)
|
|
{
|
|
tree t;
|
|
gcc_assert (VAR_P (var)
|
|
|| TREE_CODE (var) == PARM_DECL
|
|
|| TREE_CODE (var) == RESULT_DECL
|
|
|| (TYPE_P (var) && is_gimple_reg_type (var)));
|
|
|
|
/* Get the specified SSA name version. */
|
|
if (version != 0)
|
|
{
|
|
t = make_node (SSA_NAME);
|
|
SSA_NAME_VERSION (t) = version;
|
|
if (version >= SSANAMES (fn)->length ())
|
|
vec_safe_grow_cleared (SSANAMES (fn), version + 1, true);
|
|
gcc_assert ((*SSANAMES (fn))[version] == NULL);
|
|
(*SSANAMES (fn))[version] = t;
|
|
ssa_name_nodes_created++;
|
|
}
|
|
/* If our free list has an element, then use it. */
|
|
else if (!vec_safe_is_empty (FREE_SSANAMES (fn)))
|
|
{
|
|
t = FREE_SSANAMES (fn)->pop ();
|
|
ssa_name_nodes_reused++;
|
|
|
|
/* The node was cleared out when we put it on the free list, so
|
|
there is no need to do so again here. */
|
|
gcc_assert ((*SSANAMES (fn))[SSA_NAME_VERSION (t)] == NULL);
|
|
(*SSANAMES (fn))[SSA_NAME_VERSION (t)] = t;
|
|
}
|
|
else
|
|
{
|
|
t = make_node (SSA_NAME);
|
|
SSA_NAME_VERSION (t) = SSANAMES (fn)->length ();
|
|
vec_safe_push (SSANAMES (fn), t);
|
|
ssa_name_nodes_created++;
|
|
}
|
|
|
|
if (TYPE_P (var))
|
|
{
|
|
TREE_TYPE (t) = TYPE_MAIN_VARIANT (var);
|
|
SET_SSA_NAME_VAR_OR_IDENTIFIER (t, NULL_TREE);
|
|
}
|
|
else
|
|
{
|
|
TREE_TYPE (t) = TREE_TYPE (var);
|
|
SET_SSA_NAME_VAR_OR_IDENTIFIER (t, var);
|
|
}
|
|
SSA_NAME_DEF_STMT (t) = stmt;
|
|
if (POINTER_TYPE_P (TREE_TYPE (t)))
|
|
SSA_NAME_PTR_INFO (t) = NULL;
|
|
else
|
|
SSA_NAME_RANGE_INFO (t) = NULL;
|
|
|
|
SSA_NAME_IN_FREE_LIST (t) = 0;
|
|
SSA_NAME_IS_DEFAULT_DEF (t) = 0;
|
|
init_ssa_name_imm_use (t);
|
|
#if defined ENABLE_GIMPLE_CHECKING
|
|
t->ssa_name.active_iterated_stmt = NULL;
|
|
t->ssa_name.fast_iteration_depth = 0;
|
|
#endif
|
|
|
|
return t;
|
|
}
|
|
|
|
/* Update the range information for NAME, intersecting into an existing
|
|
range if applicable. Return TRUE if the range was updated. */
|
|
|
|
bool
|
|
set_range_info (tree name, const vrange &r)
|
|
{
|
|
if (r.undefined_p () || r.varying_p ())
|
|
return false;
|
|
|
|
// Pick up the current range, or VARYING if none.
|
|
tree type = TREE_TYPE (name);
|
|
if (POINTER_TYPE_P (type))
|
|
{
|
|
struct ptr_info_def *pi = get_ptr_info (name);
|
|
// If R is nonnull and pi is not, set nonnull.
|
|
if (r.nonzero_p () && (!pi || pi->pt.null))
|
|
set_ptr_nonnull (name);
|
|
else
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
value_range tmp (type);
|
|
if (range_info_p (name))
|
|
range_info_get_range (name, tmp);
|
|
else
|
|
tmp.set_varying (type);
|
|
// If the result doesn't change, or is undefined, return false.
|
|
if (!tmp.intersect (r) || tmp.undefined_p ())
|
|
return false;
|
|
if (!range_info_set_range (name, tmp))
|
|
return false;
|
|
}
|
|
if (dump_file)
|
|
{
|
|
value_range tmp (type);
|
|
fprintf (dump_file, "Global Exported: ");
|
|
print_generic_expr (dump_file, name, TDF_SLIM);
|
|
fprintf (dump_file, " = ");
|
|
gimple_range_global (tmp, name);
|
|
tmp.dump (dump_file);
|
|
fputc ('\n', dump_file);
|
|
}
|
|
// Update the active query, if needed.
|
|
get_range_query (cfun)->update_range_info (name, r);
|
|
return true;
|
|
}
|
|
|
|
/* Set nonnull attribute to pointer NAME. */
|
|
|
|
void
|
|
set_ptr_nonnull (tree name)
|
|
{
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
|
|
struct ptr_info_def *pi = get_ptr_info (name);
|
|
pi->pt.null = 0;
|
|
}
|
|
|
|
/* Update the non-zero bits bitmask of NAME. */
|
|
|
|
void
|
|
set_nonzero_bits (tree name, const wide_int &mask)
|
|
{
|
|
gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
|
|
|
|
int_range<2> r (TREE_TYPE (name));
|
|
r.set_nonzero_bits (mask);
|
|
set_range_info (name, r);
|
|
}
|
|
|
|
/* Update the known bits of NAME.
|
|
|
|
Zero bits in MASK cover constant values. Set bits in MASK cover
|
|
unknown values. VALUE are the known bits. */
|
|
|
|
void
|
|
set_bitmask (tree name, const wide_int &value, const wide_int &mask)
|
|
{
|
|
gcc_assert (!POINTER_TYPE_P (TREE_TYPE (name)));
|
|
|
|
int_range_max r (TREE_TYPE (name));
|
|
r.update_bitmask (irange_bitmask (value, mask));
|
|
set_range_info (name, r);
|
|
}
|
|
|
|
/* Return a wide_int with potentially non-zero bits in SSA_NAME
|
|
NAME, the constant for INTEGER_CST, or -1 if unknown. */
|
|
|
|
static wide_int
|
|
get_nonzero_bits_1 (const_tree name)
|
|
{
|
|
if (TREE_CODE (name) == INTEGER_CST)
|
|
return wi::to_wide (name);
|
|
|
|
if (POLY_INT_CST_P (name))
|
|
return -known_alignment (wi::to_poly_wide (name));
|
|
|
|
/* Use element_precision instead of TYPE_PRECISION so complex and
|
|
vector types get a non-zero precision. */
|
|
unsigned int precision = element_precision (TREE_TYPE (name));
|
|
|
|
if (VECTOR_TYPE_P (TREE_TYPE (name)))
|
|
{
|
|
tree elem = uniform_vector_p (name);
|
|
if (elem)
|
|
return get_nonzero_bits_1 (elem);
|
|
}
|
|
|
|
if (TREE_CODE (name) != SSA_NAME)
|
|
return wi::shwi (-1, precision);
|
|
|
|
if (POINTER_TYPE_P (TREE_TYPE (name)))
|
|
{
|
|
struct ptr_info_def *pi = SSA_NAME_PTR_INFO (name);
|
|
if (pi && pi->align)
|
|
return wi::shwi (-(HOST_WIDE_INT) pi->align
|
|
| (HOST_WIDE_INT) pi->misalign, precision);
|
|
return wi::shwi (-1, precision);
|
|
}
|
|
|
|
if (!range_info_p (name) || !irange::supports_p (TREE_TYPE (name)))
|
|
return wi::shwi (-1, precision);
|
|
|
|
int_range_max tmp;
|
|
range_info_get_range (name, tmp);
|
|
return tmp.get_nonzero_bits ();
|
|
}
|
|
|
|
/* Return a wide_int with potentially non-zero bits in SSA_NAME
|
|
NAME, the constant for INTEGER_CST, or -1 if unknown.
|
|
In addition to what get_nonzero_bits_1 handles, this handles one
|
|
level of BIT_AND_EXPR, either as a def_stmt or tree directly. */
|
|
|
|
wide_int
|
|
get_nonzero_bits (const_tree name)
|
|
{
|
|
if (TREE_CODE (name) == BIT_AND_EXPR)
|
|
return (get_nonzero_bits_1 (TREE_OPERAND (name, 0))
|
|
& get_nonzero_bits_1 (TREE_OPERAND (name, 1)));
|
|
if (TREE_CODE (name) == SSA_NAME)
|
|
{
|
|
gimple *g = SSA_NAME_DEF_STMT (name);
|
|
if (g
|
|
&& is_gimple_assign (g)
|
|
&& gimple_assign_rhs_code (g) == BIT_AND_EXPR)
|
|
return (get_nonzero_bits_1 (name)
|
|
& get_nonzero_bits_1 (gimple_assign_rhs1 (g))
|
|
& get_nonzero_bits_1 (gimple_assign_rhs2 (g)));
|
|
}
|
|
return get_nonzero_bits_1 (name);
|
|
}
|
|
|
|
/* Return a wide_int with known non-zero bits in SSA_NAME
|
|
NAME (bits whose values aren't known are also clear), the constant
|
|
for INTEGER_CST, or 0 if unknown. */
|
|
|
|
static wide_int
|
|
get_known_nonzero_bits_1 (const_tree name)
|
|
{
|
|
if (TREE_CODE (name) == INTEGER_CST)
|
|
return wi::to_wide (name);
|
|
|
|
/* Use element_precision instead of TYPE_PRECISION so complex and
|
|
vector types get a non-zero precision. */
|
|
unsigned int precision = element_precision (TREE_TYPE (name));
|
|
if (TREE_CODE (name) != SSA_NAME || POINTER_TYPE_P (TREE_TYPE (name)))
|
|
return wi::shwi (0, precision);
|
|
|
|
if (!range_info_p (name) || !irange::supports_p (TREE_TYPE (name)))
|
|
return wi::shwi (0, precision);
|
|
|
|
int_range_max tmp;
|
|
range_info_get_range (name, tmp);
|
|
if (tmp.undefined_p ())
|
|
return wi::shwi (0, precision);
|
|
irange_bitmask bm = tmp.get_bitmask ();
|
|
return wi::bit_and_not (bm.value (), bm.mask ());
|
|
}
|
|
|
|
/* Return a wide_int with known non-zero bits in SSA_NAME
|
|
NAME, the constant for INTEGER_CST, or 0 if unknown.
|
|
In addition to what get_known_nonzero_bits_1 handles, this handles one
|
|
level of BIT_IOR_EXPR, either as a def_stmt or tree directly. */
|
|
|
|
wide_int
|
|
get_known_nonzero_bits (const_tree name)
|
|
{
|
|
if (TREE_CODE (name) == BIT_IOR_EXPR)
|
|
return (get_known_nonzero_bits_1 (TREE_OPERAND (name, 0))
|
|
| get_known_nonzero_bits_1 (TREE_OPERAND (name, 1)));
|
|
if (TREE_CODE (name) == SSA_NAME)
|
|
{
|
|
gimple *g = SSA_NAME_DEF_STMT (name);
|
|
if (g
|
|
&& is_gimple_assign (g)
|
|
&& gimple_assign_rhs_code (g) == BIT_IOR_EXPR)
|
|
return (get_known_nonzero_bits_1 (name)
|
|
| get_known_nonzero_bits_1 (gimple_assign_rhs1 (g))
|
|
| get_known_nonzero_bits_1 (gimple_assign_rhs2 (g)));
|
|
}
|
|
return get_known_nonzero_bits_1 (name);
|
|
}
|
|
|
|
/* Return TRUE is OP, an SSA_NAME has a range of values [0..1] at the
|
|
STMT, false otherwise.
|
|
|
|
This can be because it is a boolean type, any unsigned integral
|
|
type with a single bit of precision, or has known range of [0..1]
|
|
via range analysis. */
|
|
|
|
bool
|
|
ssa_name_has_boolean_range (tree op, gimple *stmt)
|
|
{
|
|
gcc_assert (TREE_CODE (op) == SSA_NAME);
|
|
|
|
/* An integral type with a single bit of precision. */
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (op))
|
|
&& TYPE_UNSIGNED (TREE_TYPE (op))
|
|
&& TYPE_PRECISION (TREE_TYPE (op)) == 1)
|
|
return true;
|
|
|
|
/* An integral type with more precision, but the object
|
|
only takes on values [0..1] as determined by range
|
|
analysis. */
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (op))
|
|
&& (TYPE_PRECISION (TREE_TYPE (op)) > 1))
|
|
{
|
|
int_range<2> r;
|
|
if (get_range_query (cfun)->range_of_expr (r, op, stmt)
|
|
&& r == range_true_and_false (TREE_TYPE (op)))
|
|
return true;
|
|
|
|
if (wi::eq_p (get_nonzero_bits (op), 1))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* We no longer need the SSA_NAME expression VAR, release it so that
|
|
it may be reused.
|
|
|
|
Note it is assumed that no calls to make_ssa_name will be made
|
|
until all uses of the ssa name are released and that the only
|
|
use of the SSA_NAME expression is to check its SSA_NAME_VAR. All
|
|
other fields must be assumed clobbered. */
|
|
|
|
void
|
|
release_ssa_name_fn (struct function *fn, tree var)
|
|
{
|
|
if (!var)
|
|
return;
|
|
|
|
/* Never release the default definition for a symbol. It's a
|
|
special SSA name that should always exist once it's created. */
|
|
if (SSA_NAME_IS_DEFAULT_DEF (var))
|
|
return;
|
|
|
|
/* If VAR has been registered for SSA updating, don't remove it.
|
|
After update_ssa has run, the name will be released. */
|
|
if (name_registered_for_update_p (var))
|
|
{
|
|
release_ssa_name_after_update_ssa (var);
|
|
return;
|
|
}
|
|
|
|
/* release_ssa_name can be called multiple times on a single SSA_NAME.
|
|
However, it should only end up on our free list one time. We
|
|
keep a status bit in the SSA_NAME node itself to indicate it has
|
|
been put on the free list.
|
|
|
|
Note that once on the freelist you cannot reference the SSA_NAME's
|
|
defining statement. */
|
|
if (! SSA_NAME_IN_FREE_LIST (var))
|
|
{
|
|
int saved_ssa_name_version = SSA_NAME_VERSION (var);
|
|
use_operand_p imm = &(SSA_NAME_IMM_USE_NODE (var));
|
|
|
|
if (MAY_HAVE_DEBUG_BIND_STMTS)
|
|
insert_debug_temp_for_var_def (NULL, var);
|
|
|
|
if (flag_checking)
|
|
verify_imm_links (stderr, var);
|
|
while (imm->next != imm)
|
|
delink_imm_use (imm->next);
|
|
|
|
(*SSANAMES (fn))[SSA_NAME_VERSION (var)] = NULL_TREE;
|
|
memset (var, 0, tree_size (var));
|
|
|
|
imm->prev = imm;
|
|
imm->next = imm;
|
|
imm->loc.ssa_name = var;
|
|
|
|
/* First put back the right tree node so that the tree checking
|
|
macros do not complain. */
|
|
TREE_SET_CODE (var, SSA_NAME);
|
|
|
|
/* Restore the version number. */
|
|
SSA_NAME_VERSION (var) = saved_ssa_name_version;
|
|
|
|
/* Note this SSA_NAME is now in the first list. */
|
|
SSA_NAME_IN_FREE_LIST (var) = 1;
|
|
|
|
/* Put in a non-NULL TREE_TYPE so dumping code will not ICE
|
|
if it happens to come along a released SSA name and tries
|
|
to inspect its type. */
|
|
TREE_TYPE (var) = error_mark_node;
|
|
|
|
/* And finally queue it so that it will be put on the free list. */
|
|
vec_safe_push (FREE_SSANAMES_QUEUE (fn), var);
|
|
}
|
|
}
|
|
|
|
/* If the alignment of the pointer described by PI is known, return true and
|
|
store the alignment and the deviation from it into *ALIGNP and *MISALIGNP
|
|
respectively. Otherwise return false. */
|
|
|
|
bool
|
|
get_ptr_info_alignment (struct ptr_info_def *pi, unsigned int *alignp,
|
|
unsigned int *misalignp)
|
|
{
|
|
if (pi->align)
|
|
{
|
|
*alignp = pi->align;
|
|
*misalignp = pi->misalign;
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* State that the pointer described by PI has unknown alignment. */
|
|
|
|
void
|
|
mark_ptr_info_alignment_unknown (struct ptr_info_def *pi)
|
|
{
|
|
pi->align = 0;
|
|
pi->misalign = 0;
|
|
}
|
|
|
|
/* Store the power-of-two byte alignment and the deviation from that
|
|
alignment of pointer described by PI to ALIOGN and MISALIGN
|
|
respectively. */
|
|
|
|
void
|
|
set_ptr_info_alignment (struct ptr_info_def *pi, unsigned int align,
|
|
unsigned int misalign)
|
|
{
|
|
gcc_checking_assert (align != 0);
|
|
gcc_assert ((align & (align - 1)) == 0);
|
|
gcc_assert ((misalign & ~(align - 1)) == 0);
|
|
|
|
pi->align = align;
|
|
pi->misalign = misalign;
|
|
}
|
|
|
|
/* If pointer described by PI has known alignment, increase its known
|
|
misalignment by INCREMENT modulo its current alignment. */
|
|
|
|
void
|
|
adjust_ptr_info_misalignment (struct ptr_info_def *pi, poly_uint64 increment)
|
|
{
|
|
if (pi->align != 0)
|
|
{
|
|
increment += pi->misalign;
|
|
if (!known_misalignment (increment, pi->align, &pi->misalign))
|
|
{
|
|
pi->align = known_alignment (increment);
|
|
pi->misalign = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return the alias information associated with pointer T. It creates a
|
|
new instance if none existed. */
|
|
|
|
struct ptr_info_def *
|
|
get_ptr_info (tree t)
|
|
{
|
|
struct ptr_info_def *pi;
|
|
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (t)));
|
|
|
|
pi = SSA_NAME_PTR_INFO (t);
|
|
if (pi == NULL)
|
|
{
|
|
pi = ggc_cleared_alloc<ptr_info_def> ();
|
|
pt_solution_reset (&pi->pt);
|
|
mark_ptr_info_alignment_unknown (pi);
|
|
SSA_NAME_PTR_INFO (t) = pi;
|
|
}
|
|
|
|
return pi;
|
|
}
|
|
|
|
|
|
/* Creates a new SSA name using the template NAME tobe defined by
|
|
statement STMT in function FN. */
|
|
|
|
tree
|
|
copy_ssa_name_fn (struct function *fn, tree name, gimple *stmt)
|
|
{
|
|
tree new_name;
|
|
|
|
if (SSA_NAME_VAR (name))
|
|
new_name = make_ssa_name_fn (fn, SSA_NAME_VAR (name), stmt);
|
|
else
|
|
{
|
|
new_name = make_ssa_name_fn (fn, TREE_TYPE (name), stmt);
|
|
SET_SSA_NAME_VAR_OR_IDENTIFIER (new_name, SSA_NAME_IDENTIFIER (name));
|
|
}
|
|
|
|
return new_name;
|
|
}
|
|
|
|
|
|
/* Creates a duplicate of the ptr_info_def at PTR_INFO for use by
|
|
the SSA name NAME. */
|
|
|
|
void
|
|
duplicate_ssa_name_ptr_info (tree name, struct ptr_info_def *ptr_info)
|
|
{
|
|
struct ptr_info_def *new_ptr_info;
|
|
|
|
gcc_assert (POINTER_TYPE_P (TREE_TYPE (name)));
|
|
gcc_assert (!SSA_NAME_PTR_INFO (name));
|
|
|
|
if (!ptr_info)
|
|
return;
|
|
|
|
new_ptr_info = ggc_alloc<ptr_info_def> ();
|
|
*new_ptr_info = *ptr_info;
|
|
|
|
SSA_NAME_PTR_INFO (name) = new_ptr_info;
|
|
}
|
|
|
|
void
|
|
duplicate_ssa_name_range_info (tree name, tree src)
|
|
{
|
|
gcc_checking_assert (!POINTER_TYPE_P (TREE_TYPE (src)));
|
|
gcc_checking_assert (!range_info_p (name));
|
|
|
|
if (range_info_p (src))
|
|
{
|
|
value_range src_range (TREE_TYPE (src));
|
|
range_info_get_range (src, src_range);
|
|
range_info_set_range (name, src_range);
|
|
}
|
|
}
|
|
|
|
/* For a SSA copy DEST = SRC duplicate SSA info present on DEST to SRC
|
|
to preserve it in case DEST is eliminated to SRC. */
|
|
|
|
void
|
|
maybe_duplicate_ssa_info_at_copy (tree dest, tree src)
|
|
{
|
|
/* While points-to info is flow-insensitive we have to avoid copying
|
|
info from not executed regions invoking UB to dominating defs. */
|
|
if (gimple_bb (SSA_NAME_DEF_STMT (src))
|
|
!= gimple_bb (SSA_NAME_DEF_STMT (dest)))
|
|
return;
|
|
|
|
if (POINTER_TYPE_P (TREE_TYPE (dest))
|
|
&& SSA_NAME_PTR_INFO (dest)
|
|
&& ! SSA_NAME_PTR_INFO (src))
|
|
duplicate_ssa_name_ptr_info (src, SSA_NAME_PTR_INFO (dest));
|
|
else if (INTEGRAL_TYPE_P (TREE_TYPE (dest))
|
|
&& SSA_NAME_RANGE_INFO (dest)
|
|
&& ! SSA_NAME_RANGE_INFO (src))
|
|
duplicate_ssa_name_range_info (src, dest);
|
|
}
|
|
|
|
|
|
/* Creates a duplicate of a ssa name NAME tobe defined by statement STMT
|
|
in function FN. */
|
|
|
|
tree
|
|
duplicate_ssa_name_fn (struct function *fn, tree name, gimple *stmt)
|
|
{
|
|
tree new_name = copy_ssa_name_fn (fn, name, stmt);
|
|
if (POINTER_TYPE_P (TREE_TYPE (name)))
|
|
{
|
|
struct ptr_info_def *old_ptr_info = SSA_NAME_PTR_INFO (name);
|
|
|
|
if (old_ptr_info)
|
|
duplicate_ssa_name_ptr_info (new_name, old_ptr_info);
|
|
}
|
|
else if (range_info_p (name))
|
|
duplicate_ssa_name_range_info (new_name, name);
|
|
|
|
return new_name;
|
|
}
|
|
|
|
|
|
/* Reset all flow sensitive data on NAME such as range-info, nonzero
|
|
bits and alignment. */
|
|
|
|
void
|
|
reset_flow_sensitive_info (tree name)
|
|
{
|
|
if (POINTER_TYPE_P (TREE_TYPE (name)))
|
|
{
|
|
/* points-to info is not flow-sensitive. */
|
|
if (SSA_NAME_PTR_INFO (name))
|
|
{
|
|
/* [E]VRP can derive context sensitive alignment info and
|
|
non-nullness properties. We must reset both. */
|
|
mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
|
|
SSA_NAME_PTR_INFO (name)->pt.null = 1;
|
|
}
|
|
}
|
|
else
|
|
SSA_NAME_RANGE_INFO (name) = NULL;
|
|
}
|
|
|
|
/* Clear all flow sensitive data from all statements and PHI definitions
|
|
in BB. */
|
|
|
|
void
|
|
reset_flow_sensitive_info_in_bb (basic_block bb)
|
|
{
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
ssa_op_iter i;
|
|
tree op;
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
|
|
reset_flow_sensitive_info (op);
|
|
}
|
|
|
|
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
tree phi_def = gimple_phi_result (gsi.phi ());
|
|
reset_flow_sensitive_info (phi_def);
|
|
}
|
|
}
|
|
|
|
/* Release all the SSA_NAMEs created by STMT. */
|
|
|
|
void
|
|
release_defs (gimple *stmt)
|
|
{
|
|
tree def;
|
|
ssa_op_iter iter;
|
|
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
|
|
if (TREE_CODE (def) == SSA_NAME)
|
|
release_ssa_name (def);
|
|
}
|
|
|
|
|
|
/* Replace the symbol associated with SSA_NAME with SYM. */
|
|
|
|
void
|
|
replace_ssa_name_symbol (tree ssa_name, tree sym)
|
|
{
|
|
SET_SSA_NAME_VAR_OR_IDENTIFIER (ssa_name, sym);
|
|
TREE_TYPE (ssa_name) = TREE_TYPE (sym);
|
|
}
|
|
|
|
/* Release the vector of free SSA_NAMEs and compact the vector of SSA_NAMEs
|
|
that are live. */
|
|
|
|
static void
|
|
release_free_names_and_compact_live_names (function *fun)
|
|
{
|
|
unsigned i, j;
|
|
int n = vec_safe_length (FREE_SSANAMES (fun));
|
|
|
|
/* Now release the freelist. */
|
|
vec_free (FREE_SSANAMES (fun));
|
|
|
|
/* And compact the SSA number space. We make sure to not change the
|
|
relative order of SSA versions. */
|
|
for (i = 1, j = 1; i < fun->gimple_df->ssa_names->length (); ++i)
|
|
{
|
|
tree name = ssa_name (i);
|
|
if (name)
|
|
{
|
|
if (i != j)
|
|
{
|
|
SSA_NAME_VERSION (name) = j;
|
|
(*fun->gimple_df->ssa_names)[j] = name;
|
|
}
|
|
j++;
|
|
}
|
|
}
|
|
fun->gimple_df->ssa_names->truncate (j);
|
|
|
|
statistics_counter_event (fun, "SSA names released", n);
|
|
statistics_counter_event (fun, "SSA name holes removed", i - j);
|
|
if (dump_file)
|
|
fprintf (dump_file, "Released %i names, %.2f%%, removed %i holes\n",
|
|
n, n * 100.0 / num_ssa_names, i - j);
|
|
}
|
|
|
|
/* Return SSA names that are unused to GGC memory and compact the SSA
|
|
version namespace. This is used to keep footprint of compiler during
|
|
interprocedural optimization. */
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_release_ssa_names =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"release_ssa", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_SSA_OTHER, /* tv_id */
|
|
PROP_ssa, /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
TODO_remove_unused_locals, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_release_ssa_names : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_release_ssa_names (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_release_ssa_names, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
unsigned int execute (function *) final override;
|
|
|
|
}; // class pass_release_ssa_names
|
|
|
|
unsigned int
|
|
pass_release_ssa_names::execute (function *fun)
|
|
{
|
|
release_free_names_and_compact_live_names (fun);
|
|
return 0;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_release_ssa_names (gcc::context *ctxt)
|
|
{
|
|
return new pass_release_ssa_names (ctxt);
|
|
}
|
|
|
|
/* Save and restore of flow sensitive information. */
|
|
|
|
/* Save off the flow sensitive info from NAME. */
|
|
|
|
void
|
|
flow_sensitive_info_storage::save (tree name)
|
|
{
|
|
gcc_assert (state == 0);
|
|
if (!POINTER_TYPE_P (TREE_TYPE (name)))
|
|
{
|
|
range_info = SSA_NAME_RANGE_INFO (name);
|
|
state = 1;
|
|
return;
|
|
}
|
|
state = -1;
|
|
auto ptr_info = SSA_NAME_PTR_INFO (name);
|
|
if (ptr_info)
|
|
{
|
|
align = ptr_info->align;
|
|
misalign = ptr_info->misalign;
|
|
null = SSA_NAME_PTR_INFO (name)->pt.null;
|
|
}
|
|
else
|
|
{
|
|
align = 0;
|
|
misalign = 0;
|
|
null = true;
|
|
}
|
|
}
|
|
|
|
/* Restore the flow sensitive info from NAME. */
|
|
|
|
void
|
|
flow_sensitive_info_storage::restore (tree name)
|
|
{
|
|
gcc_assert (state != 0);
|
|
if (!POINTER_TYPE_P (TREE_TYPE (name)))
|
|
{
|
|
gcc_assert (state == 1);
|
|
SSA_NAME_RANGE_INFO (name) = range_info;
|
|
return;
|
|
}
|
|
gcc_assert (state == -1);
|
|
auto ptr_info = SSA_NAME_PTR_INFO (name);
|
|
/* If there was no flow sensitive info on the pointer
|
|
just return, there is nothing to restore to. */
|
|
if (!ptr_info)
|
|
return;
|
|
if (align != 0)
|
|
set_ptr_info_alignment (ptr_info, align, misalign);
|
|
else
|
|
mark_ptr_info_alignment_unknown (ptr_info);
|
|
SSA_NAME_PTR_INFO (name)->pt.null = null;
|
|
}
|
|
|
|
/* Save off the flow sensitive info from NAME.
|
|
And reset the flow sensitive info of NAME. */
|
|
|
|
void
|
|
flow_sensitive_info_storage::save_and_clear (tree name)
|
|
{
|
|
save (name);
|
|
reset_flow_sensitive_info (name);
|
|
}
|
|
|
|
/* Clear the storage. */
|
|
void
|
|
flow_sensitive_info_storage::clear_storage (void)
|
|
{
|
|
state = 0;
|
|
}
|