mirror of
https://gcc.gnu.org/git/gcc.git
synced 2026-02-22 12:00:03 -05:00
This patch introduces a new custom memory allocator for use with pinned memory (in the case where the Cuda allocator isn't available). In future, this allocator will also be used for Managed Memory. Both memories are incompatible with the system malloc because allocated memory cannot share a page with memory allocated for other purposes. This means that small allocations will no longer consume an entire page of pinned memory. Unfortunately, it also means that pinned memory pages will never be unmapped (although they may be reused). This isn't a technical limitation; the "free" algorithm could be extended in future, if needed. The implementation is not perfect; there are various corner cases (especially related to extending onto new pages) where allocations and reallocations may be sub-optimal, but it should still be a step forward in support for small allocations. I have considered using libmemkind's "fixed" memory but rejected it for three reasons: 1) libmemkind may not always be present at runtime, 2) there's no currently documented means to extend a "fixed" kind one page at a time (although the code appears to have an undocumented function that may do the job, and/or extending libmemkind to support the MAP_LOCKED mmap flag with its regular kinds would be straight-forward), 3) Managed Memory benefits from having the metadata located in different memory and using an external implementation makes it hard to guarantee this. libgomp/ChangeLog: * Makefile.am (libgomp_la_SOURCES): Add simple-allocator.c. * Makefile.in: Regenerate. * basic-allocator.c: Mention simple-allocator in the comment. * config/linux/allocator.c: Include unistd.h. (pin_ctx): New variable. (ctxlock): New variable. (linux_init_pin_ctx): New function. (linux_memspace_alloc): Use simple-allocator for pinned memory. (linux_memspace_free): Likewise. (linux_memspace_realloc): Likewise. * libgomp.h (gomp_simple_alloc_init_context): New prototype. (gomp_simple_alloc_register_memory): New prototype. (gomp_simple_alloc): New prototype. (gomp_simple_free): New prototype. (gomp_simple_realloc): New prototype. * libgomp.texi: Update pinned memory trait documentation. * testsuite/libgomp.c/alloc-pinned-8.c: New test. * simple-allocator.c: New file.
388 lines
11 KiB
C
388 lines
11 KiB
C
/* Copyright (C) 2023-2025 Free Software Foundation, Inc.
|
|
|
|
This file is part of the GNU Offloading and Multi Processing Library
|
|
(libgomp).
|
|
|
|
Libgomp is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* This is a basic "malloc" implementation intended for use with small,
|
|
low-latency memories.
|
|
|
|
Compared to the "simple" allocator, this one is designed to keep the
|
|
metadata and heap together (no slow memory needed), and prioritize
|
|
space-efficiency over algorithm speed (the memory already being
|
|
low-latency).
|
|
|
|
To use this template, define BASIC_ALLOC_PREFIX, and then #include the
|
|
source file. The other configuration macros are optional.
|
|
|
|
The root heap descriptor is stored in the first bytes of the heap, and each
|
|
free chunk contains a similar descriptor for the next free chunk in the
|
|
chain.
|
|
|
|
The descriptor is two values: offset and size, which describe the
|
|
location of a chunk of memory available for allocation. The offset is
|
|
relative to the base of the heap. The special offset value 0xffffffff
|
|
indicates that the heap (free chain) is locked. The offset and size are
|
|
32-bit values so the base alignment can be 8-bytes.
|
|
|
|
Memory is allocated to the first free chunk that fits. The free chain
|
|
is always stored in order of the offset to assist coalescing adjacent
|
|
chunks. */
|
|
|
|
#include "libgomp.h"
|
|
|
|
#ifndef BASIC_ALLOC_PREFIX
|
|
#error "BASIC_ALLOC_PREFIX not defined."
|
|
#endif
|
|
|
|
#ifndef BASIC_ALLOC_YIELD
|
|
#define BASIC_ALLOC_YIELD
|
|
#endif
|
|
|
|
#define ALIGN(VAR) (((VAR) + 7) & ~7) /* 8-byte granularity. */
|
|
|
|
#define fn1(prefix, name) prefix ## _ ## name
|
|
#define fn(prefix, name) fn1 (prefix, name)
|
|
#define basic_alloc_init fn(BASIC_ALLOC_PREFIX,init)
|
|
#define basic_alloc_alloc fn(BASIC_ALLOC_PREFIX,alloc)
|
|
#define basic_alloc_calloc fn(BASIC_ALLOC_PREFIX,calloc)
|
|
#define basic_alloc_free fn(BASIC_ALLOC_PREFIX,free)
|
|
#define basic_alloc_realloc fn(BASIC_ALLOC_PREFIX,realloc)
|
|
|
|
typedef struct {
|
|
uint32_t offset;
|
|
uint32_t size;
|
|
} heapdesc;
|
|
|
|
void
|
|
basic_alloc_init (char *heap, size_t limit)
|
|
{
|
|
if (heap == NULL)
|
|
return;
|
|
|
|
/* Initialize the head of the free chain. */
|
|
heapdesc *root = (heapdesc *) heap;
|
|
root->offset = ALIGN(1);
|
|
root->size = limit - root->offset;
|
|
|
|
/* And terminate the chain. */
|
|
heapdesc *next = (heapdesc *) (heap + root->offset);
|
|
next->offset = 0;
|
|
next->size = 0;
|
|
}
|
|
|
|
static void *
|
|
basic_alloc_alloc (char *heap, size_t size)
|
|
{
|
|
if (heap == NULL)
|
|
return NULL;
|
|
|
|
/* Memory is allocated in N-byte granularity. */
|
|
size = ALIGN (size);
|
|
|
|
/* Acquire a lock on the low-latency heap. */
|
|
heapdesc root, *root_ptr = (heapdesc *) heap;
|
|
do
|
|
{
|
|
root.offset = __atomic_exchange_n (&root_ptr->offset, 0xffffffff,
|
|
MEMMODEL_ACQUIRE);
|
|
if (root.offset != 0xffffffff)
|
|
{
|
|
root.size = root_ptr->size;
|
|
break;
|
|
}
|
|
/* Spin. */
|
|
BASIC_ALLOC_YIELD;
|
|
}
|
|
while (1);
|
|
|
|
/* Walk the free chain. */
|
|
heapdesc chunk = root;
|
|
heapdesc *prev_chunkptr = NULL;
|
|
heapdesc *chunkptr = (heapdesc *) (heap + chunk.offset);
|
|
heapdesc onward_chain = *chunkptr;
|
|
while (chunk.size != 0 && (uint32_t) size > chunk.size)
|
|
{
|
|
chunk = onward_chain;
|
|
prev_chunkptr = chunkptr;
|
|
chunkptr = (heapdesc *) (heap + chunk.offset);
|
|
onward_chain = *chunkptr;
|
|
}
|
|
|
|
void *result = NULL;
|
|
if (chunk.size != 0)
|
|
{
|
|
/* Allocation successful. */
|
|
result = chunkptr;
|
|
|
|
/* Update the free chain. */
|
|
heapdesc stillfree = chunk;
|
|
stillfree.offset += size;
|
|
stillfree.size -= size;
|
|
heapdesc *stillfreeptr = (heapdesc *) (heap + stillfree.offset);
|
|
|
|
if (stillfree.size == 0)
|
|
/* The whole chunk was used. */
|
|
stillfree = onward_chain;
|
|
else
|
|
/* The chunk was split, so restore the onward chain. */
|
|
*stillfreeptr = onward_chain;
|
|
|
|
/* The previous free slot or root now points to stillfree. */
|
|
if (prev_chunkptr)
|
|
*prev_chunkptr = stillfree;
|
|
else
|
|
root = stillfree;
|
|
}
|
|
|
|
/* Update the free chain root and release the lock. */
|
|
root_ptr->size = root.size;
|
|
__atomic_store_n (&root_ptr->offset, root.offset, MEMMODEL_RELEASE);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void *
|
|
basic_alloc_calloc (char *heap, size_t size)
|
|
{
|
|
/* Memory is allocated in N-byte granularity. */
|
|
size = ALIGN (size);
|
|
|
|
uint64_t *result = basic_alloc_alloc (heap, size);
|
|
if (result)
|
|
/* Inline memset in which we know size is a multiple of 8. */
|
|
for (unsigned i = 0; i < (unsigned) size / 8; i++)
|
|
result[i] = 0;
|
|
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
basic_alloc_free (char *heap, void *addr, size_t size)
|
|
{
|
|
/* Memory is allocated in N-byte granularity. */
|
|
size = ALIGN (size);
|
|
|
|
/* Acquire a lock on the low-latency heap. */
|
|
heapdesc root, *root_ptr = (heapdesc *) heap;
|
|
do
|
|
{
|
|
root.offset = __atomic_exchange_n (&root_ptr->offset, 0xffffffff,
|
|
MEMMODEL_ACQUIRE);
|
|
if (root.offset != 0xffffffff)
|
|
{
|
|
root.size = root_ptr->size;
|
|
break;
|
|
}
|
|
/* Spin. */
|
|
BASIC_ALLOC_YIELD;
|
|
}
|
|
while (1);
|
|
|
|
/* Walk the free chain to find where to insert a new entry. */
|
|
heapdesc chunk = root, prev_chunk = {0};
|
|
heapdesc *prev_chunkptr = NULL, *prevprev_chunkptr = NULL;
|
|
heapdesc *chunkptr = (heapdesc *) (heap + chunk.offset);
|
|
heapdesc onward_chain = *chunkptr;
|
|
while (chunk.size != 0 && addr > (void *) chunkptr)
|
|
{
|
|
prev_chunk = chunk;
|
|
chunk = onward_chain;
|
|
prevprev_chunkptr = prev_chunkptr;
|
|
prev_chunkptr = chunkptr;
|
|
chunkptr = (heapdesc *) (heap + chunk.offset);
|
|
onward_chain = *chunkptr;
|
|
}
|
|
|
|
/* Create the new chunk descriptor. */
|
|
heapdesc newfreechunk;
|
|
newfreechunk.offset = (uint32_t) ((uintptr_t) addr - (uintptr_t) heap);
|
|
newfreechunk.size = (uint32_t) size;
|
|
|
|
/* Coalesce adjacent free chunks. */
|
|
if (newfreechunk.offset + size == chunk.offset)
|
|
{
|
|
/* Free chunk follows. */
|
|
newfreechunk.size += chunk.size;
|
|
chunk = onward_chain;
|
|
}
|
|
if (prev_chunkptr)
|
|
{
|
|
if (prev_chunk.offset + prev_chunk.size
|
|
== newfreechunk.offset)
|
|
{
|
|
/* Free chunk precedes. */
|
|
newfreechunk.offset = prev_chunk.offset;
|
|
newfreechunk.size += prev_chunk.size;
|
|
addr = heap + prev_chunk.offset;
|
|
prev_chunkptr = prevprev_chunkptr;
|
|
}
|
|
}
|
|
|
|
/* Update the free chain in the new and previous chunks. */
|
|
*(heapdesc *) addr = chunk;
|
|
if (prev_chunkptr)
|
|
*prev_chunkptr = newfreechunk;
|
|
else
|
|
root = newfreechunk;
|
|
|
|
/* Update the free chain root and release the lock. */
|
|
root_ptr->size = root.size;
|
|
__atomic_store_n (&root_ptr->offset, root.offset, MEMMODEL_RELEASE);
|
|
|
|
}
|
|
|
|
static void *
|
|
basic_alloc_realloc (char *heap, void *addr, size_t oldsize,
|
|
size_t size)
|
|
{
|
|
/* Memory is allocated in N-byte granularity. */
|
|
oldsize = ALIGN (oldsize);
|
|
size = ALIGN (size);
|
|
|
|
if (oldsize == size)
|
|
return addr;
|
|
|
|
/* Acquire a lock on the low-latency heap. */
|
|
heapdesc root, *root_ptr = (heapdesc *) heap;
|
|
do
|
|
{
|
|
root.offset = __atomic_exchange_n (&root_ptr->offset, 0xffffffff,
|
|
MEMMODEL_ACQUIRE);
|
|
if (root.offset != 0xffffffff)
|
|
{
|
|
root.size = root_ptr->size;
|
|
break;
|
|
}
|
|
/* Spin. */
|
|
BASIC_ALLOC_YIELD;
|
|
}
|
|
while (1);
|
|
|
|
/* Walk the free chain. */
|
|
heapdesc chunk = root;
|
|
heapdesc *prev_chunkptr = NULL;
|
|
heapdesc *chunkptr = (heapdesc *) (heap + chunk.offset);
|
|
heapdesc onward_chain = *chunkptr;
|
|
while (chunk.size != 0 && (void *) chunkptr < addr)
|
|
{
|
|
chunk = onward_chain;
|
|
prev_chunkptr = chunkptr;
|
|
chunkptr = (heapdesc *) (heap + chunk.offset);
|
|
onward_chain = *chunkptr;
|
|
}
|
|
|
|
void *result = NULL;
|
|
if (size < oldsize)
|
|
{
|
|
/* The new allocation is smaller than the old; we can always
|
|
shrink an allocation in place. */
|
|
result = addr;
|
|
|
|
heapdesc *nowfreeptr = (heapdesc *) (addr + size);
|
|
|
|
/* Update the free chain. */
|
|
heapdesc nowfree;
|
|
nowfree.offset = (char *) nowfreeptr - heap;
|
|
nowfree.size = oldsize - size;
|
|
|
|
if (nowfree.offset + size == chunk.offset)
|
|
{
|
|
/* Coalesce following free chunk. */
|
|
nowfree.size += chunk.size;
|
|
*nowfreeptr = onward_chain;
|
|
}
|
|
else
|
|
*nowfreeptr = chunk;
|
|
|
|
/* The previous free slot or root now points to nowfree. */
|
|
if (prev_chunkptr)
|
|
*prev_chunkptr = nowfree;
|
|
else
|
|
root = nowfree;
|
|
}
|
|
else if (chunk.size != 0
|
|
&& (char *) addr + oldsize == (char *) chunkptr
|
|
&& chunk.size >= size-oldsize)
|
|
{
|
|
/* The new allocation is larger than the old, and we found a
|
|
large enough free block right after the existing block,
|
|
so we extend into that space. */
|
|
result = addr;
|
|
|
|
uint32_t delta = size-oldsize;
|
|
|
|
/* Update the free chain. */
|
|
heapdesc stillfree = chunk;
|
|
stillfree.offset += delta;
|
|
stillfree.size -= delta;
|
|
heapdesc *stillfreeptr = (heapdesc *) (heap + stillfree.offset);
|
|
|
|
if (stillfree.size == 0)
|
|
/* The whole chunk was used. */
|
|
stillfree = onward_chain;
|
|
else
|
|
/* The chunk was split, so restore the onward chain. */
|
|
*stillfreeptr = onward_chain;
|
|
|
|
/* The previous free slot or root now points to stillfree. */
|
|
if (prev_chunkptr)
|
|
*prev_chunkptr = stillfree;
|
|
else
|
|
root = stillfree;
|
|
}
|
|
/* Else realloc in-place has failed and result remains NULL. */
|
|
|
|
/* Update the free chain root and release the lock. */
|
|
root_ptr->size = root.size;
|
|
__atomic_store_n (&root_ptr->offset, root.offset, MEMMODEL_RELEASE);
|
|
|
|
if (result == NULL)
|
|
{
|
|
/* The allocation could not be extended in place, so we simply
|
|
allocate fresh memory and move the data. If we can't allocate
|
|
from low-latency memory then we leave the original alloaction
|
|
intact and return NULL.
|
|
We could do a fall-back to main memory, but we don't know what
|
|
the fall-back trait said to do. */
|
|
result = basic_alloc_alloc (heap, size);
|
|
if (result != NULL)
|
|
{
|
|
/* Inline memcpy in which we know oldsize is a multiple of 8. */
|
|
uint64_t *from = addr, *to = result;
|
|
for (unsigned i = 0; i < (unsigned) oldsize / 8; i++)
|
|
to[i] = from[i];
|
|
|
|
basic_alloc_free (heap, addr, oldsize);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#undef ALIGN
|
|
#undef fn1
|
|
#undef fn
|
|
#undef basic_alloc_init
|
|
#undef basic_alloc_alloc
|
|
#undef basic_alloc_free
|
|
#undef basic_alloc_realloc
|