mirror of
https://forge.sourceware.org/marek/gcc.git
synced 2026-02-22 03:47:02 -05:00
This produces a more optimal RPO order for iteration processing
by making sure that SCC exits are processed before SCC members
themselves.. This avoids iterating blocks unrelated to the current
iteration for RPO VN and has the chance to improve code-generation
for the non-iterative mode of RPO VN. The patch also exposes toplevel
SCCs and gets rid of the ad-hoc max_rpo computation in RPO VN.
For simplicity it also removes the odd reverse ordering of the RPO
array returned from rev_post_order_and_mark_dfs_back_seme.
Overall reduction in the number of visited blocks isn't spectacular
for bootstrap (~2.5%) but single cases see up to a 10% reduction.
The same function can be used to optimize var-tracking iteration order
as seen in the followup.
2020-07-28 Richard Biener <rguenther@suse.de>
* cfganal.h (rev_post_order_and_mark_dfs_back_seme): Adjust
prototype.
* cfganal.c (rpoamdbs_bb_data): New struct with pre BB data.
(tag_header): New helper.
(cmp_edge_dest_pre): Likewise.
(rev_post_order_and_mark_dfs_back_seme): Compute SCCs,
find SCC exits and perform a DFS walk with extra edges to
compute a RPO with adjacent SCC members when requesting an
iteration optimized order and populate the toplevel SCC array.
* tree-ssa-sccvn.c (do_rpo_vn): Remove ad-hoc computation
of max_rpo and fill it in from SCC extent info instead.
* gcc.dg/torture/20200727-0.c: New testcase.
(cherry picked from commit 3e61a20563)
1949 lines
55 KiB
C
1949 lines
55 KiB
C
/* Control flow graph analysis code for GNU compiler.
|
||
Copyright (C) 1987-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file contains various simple utilities to analyze the CFG. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "cfghooks.h"
|
||
#include "timevar.h"
|
||
#include "cfganal.h"
|
||
#include "cfgloop.h"
|
||
|
||
namespace {
|
||
/* Store the data structures necessary for depth-first search. */
|
||
class depth_first_search
|
||
{
|
||
public:
|
||
depth_first_search ();
|
||
|
||
basic_block execute (basic_block);
|
||
void add_bb (basic_block);
|
||
|
||
private:
|
||
/* stack for backtracking during the algorithm */
|
||
auto_vec<basic_block, 20> m_stack;
|
||
|
||
/* record of basic blocks already seen by depth-first search */
|
||
auto_sbitmap m_visited_blocks;
|
||
};
|
||
}
|
||
|
||
/* Mark the back edges in DFS traversal.
|
||
Return nonzero if a loop (natural or otherwise) is present.
|
||
Inspired by Depth_First_Search_PP described in:
|
||
|
||
Advanced Compiler Design and Implementation
|
||
Steven Muchnick
|
||
Morgan Kaufmann, 1997
|
||
|
||
and heavily borrowed from pre_and_rev_post_order_compute. */
|
||
|
||
bool
|
||
mark_dfs_back_edges (void)
|
||
{
|
||
int *pre;
|
||
int *post;
|
||
int prenum = 1;
|
||
int postnum = 1;
|
||
bool found = false;
|
||
|
||
/* Allocate the preorder and postorder number arrays. */
|
||
pre = XCNEWVEC (int, last_basic_block_for_fn (cfun));
|
||
post = XCNEWVEC (int, last_basic_block_for_fn (cfun));
|
||
|
||
/* Allocate stack for back-tracking up CFG. */
|
||
auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
|
||
|
||
/* Allocate bitmap to track nodes that have been visited. */
|
||
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
||
|
||
/* None of the nodes in the CFG have been visited yet. */
|
||
bitmap_clear (visited);
|
||
|
||
/* Push the first edge on to the stack. */
|
||
stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
|
||
|
||
while (!stack.is_empty ())
|
||
{
|
||
basic_block src;
|
||
basic_block dest;
|
||
|
||
/* Look at the edge on the top of the stack. */
|
||
edge_iterator ei = stack.last ();
|
||
src = ei_edge (ei)->src;
|
||
dest = ei_edge (ei)->dest;
|
||
ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
|
||
|
||
/* Check if the edge destination has been visited yet. */
|
||
if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && ! bitmap_bit_p (visited,
|
||
dest->index))
|
||
{
|
||
/* Mark that we have visited the destination. */
|
||
bitmap_set_bit (visited, dest->index);
|
||
|
||
pre[dest->index] = prenum++;
|
||
if (EDGE_COUNT (dest->succs) > 0)
|
||
{
|
||
/* Since the DEST node has been visited for the first
|
||
time, check its successors. */
|
||
stack.quick_push (ei_start (dest->succs));
|
||
}
|
||
else
|
||
post[dest->index] = postnum++;
|
||
}
|
||
else
|
||
{
|
||
if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& pre[src->index] >= pre[dest->index]
|
||
&& post[dest->index] == 0)
|
||
ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
|
||
|
||
if (ei_one_before_end_p (ei)
|
||
&& src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
post[src->index] = postnum++;
|
||
|
||
if (!ei_one_before_end_p (ei))
|
||
ei_next (&stack.last ());
|
||
else
|
||
stack.pop ();
|
||
}
|
||
}
|
||
|
||
free (pre);
|
||
free (post);
|
||
|
||
return found;
|
||
}
|
||
|
||
/* Find unreachable blocks. An unreachable block will have 0 in
|
||
the reachable bit in block->flags. A nonzero value indicates the
|
||
block is reachable. */
|
||
|
||
void
|
||
find_unreachable_blocks (void)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
basic_block *tos, *worklist, bb;
|
||
|
||
tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
|
||
|
||
/* Clear all the reachability flags. */
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
bb->flags &= ~BB_REACHABLE;
|
||
|
||
/* Add our starting points to the worklist. Almost always there will
|
||
be only one. It isn't inconceivable that we might one day directly
|
||
support Fortran alternate entry points. */
|
||
|
||
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
|
||
{
|
||
*tos++ = e->dest;
|
||
|
||
/* Mark the block reachable. */
|
||
e->dest->flags |= BB_REACHABLE;
|
||
}
|
||
|
||
/* Iterate: find everything reachable from what we've already seen. */
|
||
|
||
while (tos != worklist)
|
||
{
|
||
basic_block b = *--tos;
|
||
|
||
FOR_EACH_EDGE (e, ei, b->succs)
|
||
{
|
||
basic_block dest = e->dest;
|
||
|
||
if (!(dest->flags & BB_REACHABLE))
|
||
{
|
||
*tos++ = dest;
|
||
dest->flags |= BB_REACHABLE;
|
||
}
|
||
}
|
||
}
|
||
|
||
free (worklist);
|
||
}
|
||
|
||
/* Verify that there are no unreachable blocks in the current function. */
|
||
|
||
void
|
||
verify_no_unreachable_blocks (void)
|
||
{
|
||
find_unreachable_blocks ();
|
||
|
||
basic_block bb;
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
gcc_assert ((bb->flags & BB_REACHABLE) != 0);
|
||
}
|
||
|
||
|
||
/* Functions to access an edge list with a vector representation.
|
||
Enough data is kept such that given an index number, the
|
||
pred and succ that edge represents can be determined, or
|
||
given a pred and a succ, its index number can be returned.
|
||
This allows algorithms which consume a lot of memory to
|
||
represent the normally full matrix of edge (pred,succ) with a
|
||
single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
|
||
wasted space in the client code due to sparse flow graphs. */
|
||
|
||
/* This functions initializes the edge list. Basically the entire
|
||
flowgraph is processed, and all edges are assigned a number,
|
||
and the data structure is filled in. */
|
||
|
||
struct edge_list *
|
||
create_edge_list (void)
|
||
{
|
||
struct edge_list *elist;
|
||
edge e;
|
||
int num_edges;
|
||
basic_block bb;
|
||
edge_iterator ei;
|
||
|
||
/* Determine the number of edges in the flow graph by counting successor
|
||
edges on each basic block. */
|
||
num_edges = 0;
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
{
|
||
num_edges += EDGE_COUNT (bb->succs);
|
||
}
|
||
|
||
elist = XNEW (struct edge_list);
|
||
elist->num_edges = num_edges;
|
||
elist->index_to_edge = XNEWVEC (edge, num_edges);
|
||
|
||
num_edges = 0;
|
||
|
||
/* Follow successors of blocks, and register these edges. */
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
elist->index_to_edge[num_edges++] = e;
|
||
|
||
return elist;
|
||
}
|
||
|
||
/* This function free's memory associated with an edge list. */
|
||
|
||
void
|
||
free_edge_list (struct edge_list *elist)
|
||
{
|
||
if (elist)
|
||
{
|
||
free (elist->index_to_edge);
|
||
free (elist);
|
||
}
|
||
}
|
||
|
||
/* This function provides debug output showing an edge list. */
|
||
|
||
DEBUG_FUNCTION void
|
||
print_edge_list (FILE *f, struct edge_list *elist)
|
||
{
|
||
int x;
|
||
|
||
fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
|
||
n_basic_blocks_for_fn (cfun), elist->num_edges);
|
||
|
||
for (x = 0; x < elist->num_edges; x++)
|
||
{
|
||
fprintf (f, " %-4d - edge(", x);
|
||
if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
fprintf (f, "entry,");
|
||
else
|
||
fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
|
||
|
||
if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
fprintf (f, "exit)\n");
|
||
else
|
||
fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
|
||
}
|
||
}
|
||
|
||
/* This function provides an internal consistency check of an edge list,
|
||
verifying that all edges are present, and that there are no
|
||
extra edges. */
|
||
|
||
DEBUG_FUNCTION void
|
||
verify_edge_list (FILE *f, struct edge_list *elist)
|
||
{
|
||
int pred, succ, index;
|
||
edge e;
|
||
basic_block bb, p, s;
|
||
edge_iterator ei;
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
{
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
pred = e->src->index;
|
||
succ = e->dest->index;
|
||
index = EDGE_INDEX (elist, e->src, e->dest);
|
||
if (index == EDGE_INDEX_NO_EDGE)
|
||
{
|
||
fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
|
||
continue;
|
||
}
|
||
|
||
if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
|
||
fprintf (f, "*p* Pred for index %d should be %d not %d\n",
|
||
index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
|
||
if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
|
||
fprintf (f, "*p* Succ for index %d should be %d not %d\n",
|
||
index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
|
||
}
|
||
}
|
||
|
||
/* We've verified that all the edges are in the list, now lets make sure
|
||
there are no spurious edges in the list. This is an expensive check! */
|
||
|
||
FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
|
||
{
|
||
int found_edge = 0;
|
||
|
||
FOR_EACH_EDGE (e, ei, p->succs)
|
||
if (e->dest == s)
|
||
{
|
||
found_edge = 1;
|
||
break;
|
||
}
|
||
|
||
FOR_EACH_EDGE (e, ei, s->preds)
|
||
if (e->src == p)
|
||
{
|
||
found_edge = 1;
|
||
break;
|
||
}
|
||
|
||
if (EDGE_INDEX (elist, p, s)
|
||
== EDGE_INDEX_NO_EDGE && found_edge != 0)
|
||
fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
|
||
p->index, s->index);
|
||
if (EDGE_INDEX (elist, p, s)
|
||
!= EDGE_INDEX_NO_EDGE && found_edge == 0)
|
||
fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
|
||
p->index, s->index, EDGE_INDEX (elist, p, s));
|
||
}
|
||
}
|
||
|
||
|
||
/* Functions to compute control dependences. */
|
||
|
||
/* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
|
||
void
|
||
control_dependences::set_control_dependence_map_bit (basic_block bb,
|
||
int edge_index)
|
||
{
|
||
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
return;
|
||
gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
bitmap_set_bit (control_dependence_map[bb->index], edge_index);
|
||
}
|
||
|
||
/* Clear all control dependences for block BB. */
|
||
void
|
||
control_dependences::clear_control_dependence_bitmap (basic_block bb)
|
||
{
|
||
bitmap_clear (control_dependence_map[bb->index]);
|
||
}
|
||
|
||
/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
|
||
This function is necessary because some blocks have negative numbers. */
|
||
|
||
static inline basic_block
|
||
find_pdom (basic_block block)
|
||
{
|
||
gcc_assert (block != ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
else
|
||
{
|
||
basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
|
||
if (! bb)
|
||
return EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
return bb;
|
||
}
|
||
}
|
||
|
||
/* Determine all blocks' control dependences on the given edge with edge_list
|
||
EL index EDGE_INDEX, ala Morgan, Section 3.6. */
|
||
|
||
void
|
||
control_dependences::find_control_dependence (int edge_index)
|
||
{
|
||
basic_block current_block;
|
||
basic_block ending_block;
|
||
|
||
gcc_assert (get_edge_src (edge_index) != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
/* For abnormal edges, we don't make current_block control
|
||
dependent because instructions that throw are always necessary
|
||
anyway. */
|
||
edge e = find_edge (get_edge_src (edge_index), get_edge_dest (edge_index));
|
||
if (e->flags & EDGE_ABNORMAL)
|
||
return;
|
||
|
||
if (get_edge_src (edge_index) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
ending_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
else
|
||
ending_block = find_pdom (get_edge_src (edge_index));
|
||
|
||
for (current_block = get_edge_dest (edge_index);
|
||
current_block != ending_block
|
||
&& current_block != EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
current_block = find_pdom (current_block))
|
||
set_control_dependence_map_bit (current_block, edge_index);
|
||
}
|
||
|
||
/* Record all blocks' control dependences on all edges in the edge
|
||
list EL, ala Morgan, Section 3.6. */
|
||
|
||
control_dependences::control_dependences ()
|
||
{
|
||
timevar_push (TV_CONTROL_DEPENDENCES);
|
||
|
||
/* Initialize the edge list. */
|
||
int num_edges = 0;
|
||
basic_block bb;
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
num_edges += EDGE_COUNT (bb->succs);
|
||
m_el.create (num_edges);
|
||
edge e;
|
||
edge_iterator ei;
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
m_el.quick_push (std::make_pair (e->src->index, e->dest->index));
|
||
|
||
control_dependence_map.create (last_basic_block_for_fn (cfun));
|
||
for (int i = 0; i < last_basic_block_for_fn (cfun); ++i)
|
||
control_dependence_map.quick_push (BITMAP_ALLOC (NULL));
|
||
for (int i = 0; i < num_edges; ++i)
|
||
find_control_dependence (i);
|
||
|
||
timevar_pop (TV_CONTROL_DEPENDENCES);
|
||
}
|
||
|
||
/* Free control dependences and the associated edge list. */
|
||
|
||
control_dependences::~control_dependences ()
|
||
{
|
||
for (unsigned i = 0; i < control_dependence_map.length (); ++i)
|
||
BITMAP_FREE (control_dependence_map[i]);
|
||
control_dependence_map.release ();
|
||
m_el.release ();
|
||
}
|
||
|
||
/* Returns the bitmap of edges the basic-block I is dependent on. */
|
||
|
||
bitmap
|
||
control_dependences::get_edges_dependent_on (int i)
|
||
{
|
||
return control_dependence_map[i];
|
||
}
|
||
|
||
/* Returns the edge source with index I from the edge list. */
|
||
|
||
basic_block
|
||
control_dependences::get_edge_src (int i)
|
||
{
|
||
return BASIC_BLOCK_FOR_FN (cfun, m_el[i].first);
|
||
}
|
||
|
||
/* Returns the edge destination with index I from the edge list. */
|
||
|
||
basic_block
|
||
control_dependences::get_edge_dest (int i)
|
||
{
|
||
return BASIC_BLOCK_FOR_FN (cfun, m_el[i].second);
|
||
}
|
||
|
||
|
||
/* Given PRED and SUCC blocks, return the edge which connects the blocks.
|
||
If no such edge exists, return NULL. */
|
||
|
||
edge
|
||
find_edge (basic_block pred, basic_block succ)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
|
||
{
|
||
FOR_EACH_EDGE (e, ei, pred->succs)
|
||
if (e->dest == succ)
|
||
return e;
|
||
}
|
||
else
|
||
{
|
||
FOR_EACH_EDGE (e, ei, succ->preds)
|
||
if (e->src == pred)
|
||
return e;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* This routine will determine what, if any, edge there is between
|
||
a specified predecessor and successor. */
|
||
|
||
int
|
||
find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
|
||
{
|
||
int x;
|
||
|
||
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
||
if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
|
||
&& INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
|
||
return x;
|
||
|
||
return (EDGE_INDEX_NO_EDGE);
|
||
}
|
||
|
||
/* This routine will remove any fake predecessor edges for a basic block.
|
||
When the edge is removed, it is also removed from whatever successor
|
||
list it is in. */
|
||
|
||
static void
|
||
remove_fake_predecessors (basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
||
{
|
||
if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
|
||
remove_edge (e);
|
||
else
|
||
ei_next (&ei);
|
||
}
|
||
}
|
||
|
||
/* This routine will remove all fake edges from the flow graph. If
|
||
we remove all fake successors, it will automatically remove all
|
||
fake predecessors. */
|
||
|
||
void
|
||
remove_fake_edges (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, NULL, next_bb)
|
||
remove_fake_predecessors (bb);
|
||
}
|
||
|
||
/* This routine will remove all fake edges to the EXIT_BLOCK. */
|
||
|
||
void
|
||
remove_fake_exit_edges (void)
|
||
{
|
||
remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
}
|
||
|
||
|
||
/* This function will add a fake edge between any block which has no
|
||
successors, and the exit block. Some data flow equations require these
|
||
edges to exist. */
|
||
|
||
void
|
||
add_noreturn_fake_exit_edges (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if (EDGE_COUNT (bb->succs) == 0)
|
||
make_single_succ_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
|
||
}
|
||
|
||
/* This function adds a fake edge between any infinite loops to the
|
||
exit block. Some optimizations require a path from each node to
|
||
the exit node.
|
||
|
||
See also Morgan, Figure 3.10, pp. 82-83.
|
||
|
||
The current implementation is ugly, not attempting to minimize the
|
||
number of inserted fake edges. To reduce the number of fake edges
|
||
to insert, add fake edges from _innermost_ loops containing only
|
||
nodes not reachable from the exit block. */
|
||
|
||
void
|
||
connect_infinite_loops_to_exit (void)
|
||
{
|
||
/* Perform depth-first search in the reverse graph to find nodes
|
||
reachable from the exit block. */
|
||
depth_first_search dfs;
|
||
dfs.add_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
/* Repeatedly add fake edges, updating the unreachable nodes. */
|
||
basic_block unvisited_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
while (1)
|
||
{
|
||
unvisited_block = dfs.execute (unvisited_block);
|
||
if (!unvisited_block)
|
||
break;
|
||
|
||
basic_block deadend_block = dfs_find_deadend (unvisited_block);
|
||
edge e = make_edge (deadend_block, EXIT_BLOCK_PTR_FOR_FN (cfun),
|
||
EDGE_FAKE);
|
||
e->probability = profile_probability::never ();
|
||
dfs.add_bb (deadend_block);
|
||
}
|
||
}
|
||
|
||
/* Compute reverse top sort order. This is computing a post order
|
||
numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
|
||
ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
|
||
true, unreachable blocks are deleted. */
|
||
|
||
int
|
||
post_order_compute (int *post_order, bool include_entry_exit,
|
||
bool delete_unreachable)
|
||
{
|
||
int post_order_num = 0;
|
||
int count;
|
||
|
||
if (include_entry_exit)
|
||
post_order[post_order_num++] = EXIT_BLOCK;
|
||
|
||
/* Allocate stack for back-tracking up CFG. */
|
||
auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
|
||
|
||
/* Allocate bitmap to track nodes that have been visited. */
|
||
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
||
|
||
/* None of the nodes in the CFG have been visited yet. */
|
||
bitmap_clear (visited);
|
||
|
||
/* Push the first edge on to the stack. */
|
||
stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs));
|
||
|
||
while (!stack.is_empty ())
|
||
{
|
||
basic_block src;
|
||
basic_block dest;
|
||
|
||
/* Look at the edge on the top of the stack. */
|
||
edge_iterator ei = stack.last ();
|
||
src = ei_edge (ei)->src;
|
||
dest = ei_edge (ei)->dest;
|
||
|
||
/* Check if the edge destination has been visited yet. */
|
||
if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& ! bitmap_bit_p (visited, dest->index))
|
||
{
|
||
/* Mark that we have visited the destination. */
|
||
bitmap_set_bit (visited, dest->index);
|
||
|
||
if (EDGE_COUNT (dest->succs) > 0)
|
||
/* Since the DEST node has been visited for the first
|
||
time, check its successors. */
|
||
stack.quick_push (ei_start (dest->succs));
|
||
else
|
||
post_order[post_order_num++] = dest->index;
|
||
}
|
||
else
|
||
{
|
||
if (ei_one_before_end_p (ei)
|
||
&& src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
post_order[post_order_num++] = src->index;
|
||
|
||
if (!ei_one_before_end_p (ei))
|
||
ei_next (&stack.last ());
|
||
else
|
||
stack.pop ();
|
||
}
|
||
}
|
||
|
||
if (include_entry_exit)
|
||
{
|
||
post_order[post_order_num++] = ENTRY_BLOCK;
|
||
count = post_order_num;
|
||
}
|
||
else
|
||
count = post_order_num + 2;
|
||
|
||
/* Delete the unreachable blocks if some were found and we are
|
||
supposed to do it. */
|
||
if (delete_unreachable && (count != n_basic_blocks_for_fn (cfun)))
|
||
{
|
||
basic_block b;
|
||
basic_block next_bb;
|
||
for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
|
||
!= EXIT_BLOCK_PTR_FOR_FN (cfun); b = next_bb)
|
||
{
|
||
next_bb = b->next_bb;
|
||
|
||
if (!(bitmap_bit_p (visited, b->index)))
|
||
delete_basic_block (b);
|
||
}
|
||
|
||
tidy_fallthru_edges ();
|
||
}
|
||
|
||
return post_order_num;
|
||
}
|
||
|
||
|
||
/* Helper routine for inverted_post_order_compute
|
||
flow_dfs_compute_reverse_execute, and the reverse-CFG
|
||
deapth first search in dominance.c.
|
||
BB has to belong to a region of CFG
|
||
unreachable by inverted traversal from the exit.
|
||
i.e. there's no control flow path from ENTRY to EXIT
|
||
that contains this BB.
|
||
This can happen in two cases - if there's an infinite loop
|
||
or if there's a block that has no successor
|
||
(call to a function with no return).
|
||
Some RTL passes deal with this condition by
|
||
calling connect_infinite_loops_to_exit () and/or
|
||
add_noreturn_fake_exit_edges ().
|
||
However, those methods involve modifying the CFG itself
|
||
which may not be desirable.
|
||
Hence, we deal with the infinite loop/no return cases
|
||
by identifying a unique basic block that can reach all blocks
|
||
in such a region by inverted traversal.
|
||
This function returns a basic block that guarantees
|
||
that all blocks in the region are reachable
|
||
by starting an inverted traversal from the returned block. */
|
||
|
||
basic_block
|
||
dfs_find_deadend (basic_block bb)
|
||
{
|
||
auto_bitmap visited;
|
||
basic_block next = bb;
|
||
|
||
for (;;)
|
||
{
|
||
if (EDGE_COUNT (next->succs) == 0)
|
||
return next;
|
||
|
||
if (! bitmap_set_bit (visited, next->index))
|
||
return bb;
|
||
|
||
bb = next;
|
||
/* If we are in an analyzed cycle make sure to try exiting it.
|
||
Note this is a heuristic only and expected to work when loop
|
||
fixup is needed as well. */
|
||
if (! bb->loop_father
|
||
|| ! loop_outer (bb->loop_father))
|
||
next = EDGE_SUCC (bb, 0)->dest;
|
||
else
|
||
{
|
||
edge_iterator ei;
|
||
edge e;
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (loop_exit_edge_p (bb->loop_father, e))
|
||
break;
|
||
next = e ? e->dest : EDGE_SUCC (bb, 0)->dest;
|
||
}
|
||
}
|
||
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
|
||
/* Compute the reverse top sort order of the inverted CFG
|
||
i.e. starting from the exit block and following the edges backward
|
||
(from successors to predecessors).
|
||
This ordering can be used for forward dataflow problems among others.
|
||
|
||
Optionally if START_POINTS is specified, start from exit block and all
|
||
basic blocks in START_POINTS. This is used by CD-DCE.
|
||
|
||
This function assumes that all blocks in the CFG are reachable
|
||
from the ENTRY (but not necessarily from EXIT).
|
||
|
||
If there's an infinite loop,
|
||
a simple inverted traversal starting from the blocks
|
||
with no successors can't visit all blocks.
|
||
To solve this problem, we first do inverted traversal
|
||
starting from the blocks with no successor.
|
||
And if there's any block left that's not visited by the regular
|
||
inverted traversal from EXIT,
|
||
those blocks are in such problematic region.
|
||
Among those, we find one block that has
|
||
any visited predecessor (which is an entry into such a region),
|
||
and start looking for a "dead end" from that block
|
||
and do another inverted traversal from that block. */
|
||
|
||
void
|
||
inverted_post_order_compute (vec<int> *post_order,
|
||
sbitmap *start_points)
|
||
{
|
||
basic_block bb;
|
||
post_order->reserve_exact (n_basic_blocks_for_fn (cfun));
|
||
|
||
if (flag_checking)
|
||
verify_no_unreachable_blocks ();
|
||
|
||
/* Allocate stack for back-tracking up CFG. */
|
||
auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (cfun) + 1);
|
||
|
||
/* Allocate bitmap to track nodes that have been visited. */
|
||
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
||
|
||
/* None of the nodes in the CFG have been visited yet. */
|
||
bitmap_clear (visited);
|
||
|
||
if (start_points)
|
||
{
|
||
FOR_ALL_BB_FN (bb, cfun)
|
||
if (bitmap_bit_p (*start_points, bb->index)
|
||
&& EDGE_COUNT (bb->preds) > 0)
|
||
{
|
||
stack.quick_push (ei_start (bb->preds));
|
||
bitmap_set_bit (visited, bb->index);
|
||
}
|
||
if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds))
|
||
{
|
||
stack.quick_push (ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds));
|
||
bitmap_set_bit (visited, EXIT_BLOCK_PTR_FOR_FN (cfun)->index);
|
||
}
|
||
}
|
||
else
|
||
/* Put all blocks that have no successor into the initial work list. */
|
||
FOR_ALL_BB_FN (bb, cfun)
|
||
if (EDGE_COUNT (bb->succs) == 0)
|
||
{
|
||
/* Push the initial edge on to the stack. */
|
||
if (EDGE_COUNT (bb->preds) > 0)
|
||
{
|
||
stack.quick_push (ei_start (bb->preds));
|
||
bitmap_set_bit (visited, bb->index);
|
||
}
|
||
}
|
||
|
||
do
|
||
{
|
||
bool has_unvisited_bb = false;
|
||
|
||
/* The inverted traversal loop. */
|
||
while (!stack.is_empty ())
|
||
{
|
||
edge_iterator ei;
|
||
basic_block pred;
|
||
|
||
/* Look at the edge on the top of the stack. */
|
||
ei = stack.last ();
|
||
bb = ei_edge (ei)->dest;
|
||
pred = ei_edge (ei)->src;
|
||
|
||
/* Check if the predecessor has been visited yet. */
|
||
if (! bitmap_bit_p (visited, pred->index))
|
||
{
|
||
/* Mark that we have visited the destination. */
|
||
bitmap_set_bit (visited, pred->index);
|
||
|
||
if (EDGE_COUNT (pred->preds) > 0)
|
||
/* Since the predecessor node has been visited for the first
|
||
time, check its predecessors. */
|
||
stack.quick_push (ei_start (pred->preds));
|
||
else
|
||
post_order->quick_push (pred->index);
|
||
}
|
||
else
|
||
{
|
||
if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& ei_one_before_end_p (ei))
|
||
post_order->quick_push (bb->index);
|
||
|
||
if (!ei_one_before_end_p (ei))
|
||
ei_next (&stack.last ());
|
||
else
|
||
stack.pop ();
|
||
}
|
||
}
|
||
|
||
/* Detect any infinite loop and activate the kludge.
|
||
Note that this doesn't check EXIT_BLOCK itself
|
||
since EXIT_BLOCK is always added after the outer do-while loop. */
|
||
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
|
||
EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
|
||
if (!bitmap_bit_p (visited, bb->index))
|
||
{
|
||
has_unvisited_bb = true;
|
||
|
||
if (EDGE_COUNT (bb->preds) > 0)
|
||
{
|
||
edge_iterator ei;
|
||
edge e;
|
||
basic_block visited_pred = NULL;
|
||
|
||
/* Find an already visited predecessor. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
if (bitmap_bit_p (visited, e->src->index))
|
||
visited_pred = e->src;
|
||
}
|
||
|
||
if (visited_pred)
|
||
{
|
||
basic_block be = dfs_find_deadend (bb);
|
||
gcc_assert (be != NULL);
|
||
bitmap_set_bit (visited, be->index);
|
||
stack.quick_push (ei_start (be->preds));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (has_unvisited_bb && stack.is_empty ())
|
||
{
|
||
/* No blocks are reachable from EXIT at all.
|
||
Find a dead-end from the ENTRY, and restart the iteration. */
|
||
basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
gcc_assert (be != NULL);
|
||
bitmap_set_bit (visited, be->index);
|
||
stack.quick_push (ei_start (be->preds));
|
||
}
|
||
|
||
/* The only case the below while fires is
|
||
when there's an infinite loop. */
|
||
}
|
||
while (!stack.is_empty ());
|
||
|
||
/* EXIT_BLOCK is always included. */
|
||
post_order->quick_push (EXIT_BLOCK);
|
||
}
|
||
|
||
/* Compute the depth first search order of FN and store in the array
|
||
PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the
|
||
reverse completion number for each node. Returns the number of nodes
|
||
visited. A depth first search tries to get as far away from the starting
|
||
point as quickly as possible.
|
||
|
||
In case the function has unreachable blocks the number of nodes
|
||
visited does not include them.
|
||
|
||
pre_order is a really a preorder numbering of the graph.
|
||
rev_post_order is really a reverse postorder numbering of the graph. */
|
||
|
||
int
|
||
pre_and_rev_post_order_compute_fn (struct function *fn,
|
||
int *pre_order, int *rev_post_order,
|
||
bool include_entry_exit)
|
||
{
|
||
int pre_order_num = 0;
|
||
int rev_post_order_num = n_basic_blocks_for_fn (fn) - 1;
|
||
|
||
/* Allocate stack for back-tracking up CFG. */
|
||
auto_vec<edge_iterator, 20> stack (n_basic_blocks_for_fn (fn) + 1);
|
||
|
||
if (include_entry_exit)
|
||
{
|
||
if (pre_order)
|
||
pre_order[pre_order_num] = ENTRY_BLOCK;
|
||
pre_order_num++;
|
||
if (rev_post_order)
|
||
rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
|
||
}
|
||
else
|
||
rev_post_order_num -= NUM_FIXED_BLOCKS;
|
||
|
||
/* BB flag to track nodes that have been visited. */
|
||
auto_bb_flag visited (fn);
|
||
|
||
/* Push the first edge on to the stack. */
|
||
stack.quick_push (ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn)->succs));
|
||
|
||
while (!stack.is_empty ())
|
||
{
|
||
basic_block src;
|
||
basic_block dest;
|
||
|
||
/* Look at the edge on the top of the stack. */
|
||
edge_iterator ei = stack.last ();
|
||
src = ei_edge (ei)->src;
|
||
dest = ei_edge (ei)->dest;
|
||
|
||
/* Check if the edge destination has been visited yet. */
|
||
if (dest != EXIT_BLOCK_PTR_FOR_FN (fn)
|
||
&& ! (dest->flags & visited))
|
||
{
|
||
/* Mark that we have visited the destination. */
|
||
dest->flags |= visited;
|
||
|
||
if (pre_order)
|
||
pre_order[pre_order_num] = dest->index;
|
||
|
||
pre_order_num++;
|
||
|
||
if (EDGE_COUNT (dest->succs) > 0)
|
||
/* Since the DEST node has been visited for the first
|
||
time, check its successors. */
|
||
stack.quick_push (ei_start (dest->succs));
|
||
else if (rev_post_order)
|
||
/* There are no successors for the DEST node so assign
|
||
its reverse completion number. */
|
||
rev_post_order[rev_post_order_num--] = dest->index;
|
||
}
|
||
else
|
||
{
|
||
if (ei_one_before_end_p (ei)
|
||
&& src != ENTRY_BLOCK_PTR_FOR_FN (fn)
|
||
&& rev_post_order)
|
||
/* There are no more successors for the SRC node
|
||
so assign its reverse completion number. */
|
||
rev_post_order[rev_post_order_num--] = src->index;
|
||
|
||
if (!ei_one_before_end_p (ei))
|
||
ei_next (&stack.last ());
|
||
else
|
||
stack.pop ();
|
||
}
|
||
}
|
||
|
||
if (include_entry_exit)
|
||
{
|
||
if (pre_order)
|
||
pre_order[pre_order_num] = EXIT_BLOCK;
|
||
pre_order_num++;
|
||
if (rev_post_order)
|
||
rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
|
||
}
|
||
|
||
/* Clear the temporarily allocated flag. */
|
||
if (!rev_post_order)
|
||
rev_post_order = pre_order;
|
||
for (int i = 0; i < pre_order_num; ++i)
|
||
BASIC_BLOCK_FOR_FN (fn, rev_post_order[i])->flags &= ~visited;
|
||
|
||
return pre_order_num;
|
||
}
|
||
|
||
/* Like pre_and_rev_post_order_compute_fn but operating on the
|
||
current function and asserting that all nodes were visited. */
|
||
|
||
int
|
||
pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
|
||
bool include_entry_exit)
|
||
{
|
||
int pre_order_num
|
||
= pre_and_rev_post_order_compute_fn (cfun, pre_order, rev_post_order,
|
||
include_entry_exit);
|
||
if (include_entry_exit)
|
||
/* The number of nodes visited should be the number of blocks. */
|
||
gcc_assert (pre_order_num == n_basic_blocks_for_fn (cfun));
|
||
else
|
||
/* The number of nodes visited should be the number of blocks minus
|
||
the entry and exit blocks which are not visited here. */
|
||
gcc_assert (pre_order_num
|
||
== (n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS));
|
||
|
||
return pre_order_num;
|
||
}
|
||
|
||
|
||
/* Per basic-block data for rev_post_order_and_mark_dfs_back_seme,
|
||
element of a sparsely populated array indexed by basic-block number. */
|
||
typedef auto_vec<int, 2> scc_exit_vec_t;
|
||
struct rpoamdbs_bb_data {
|
||
int depth;
|
||
int bb_to_pre;
|
||
/* The basic-block index of the SCC entry of the block visited first
|
||
(the SCC leader). */
|
||
int scc;
|
||
/* The index into the RPO array where the blocks SCC entries end
|
||
(only valid for the SCC leader). */
|
||
int scc_end;
|
||
/* The indexes of the exits destinations of this SCC (only valid
|
||
for the SCC leader). Initialized upon discovery of SCC leaders. */
|
||
scc_exit_vec_t scc_exits;
|
||
};
|
||
|
||
/* Tag H as a header of B, weaving H and its loop header list into the
|
||
current loop header list of B. */
|
||
|
||
static void
|
||
tag_header (int b, int h, rpoamdbs_bb_data *bb_data)
|
||
{
|
||
if (h == -1 || b == h)
|
||
return;
|
||
int cur1 = b;
|
||
int cur2 = h;
|
||
while (bb_data[cur1].scc != -1)
|
||
{
|
||
int ih = bb_data[cur1].scc;
|
||
if (ih == cur2)
|
||
return;
|
||
if (bb_data[ih].depth < bb_data[cur2].depth)
|
||
{
|
||
bb_data[cur1].scc = cur2;
|
||
cur1 = cur2;
|
||
cur2 = ih;
|
||
}
|
||
else
|
||
cur1 = ih;
|
||
}
|
||
bb_data[cur1].scc = cur2;
|
||
}
|
||
|
||
/* Comparator for a sort of two edges destinations E1 and E2 after their index
|
||
in the PRE array as specified by BB_TO_PRE. */
|
||
|
||
static int
|
||
cmp_edge_dest_pre (const void *e1_, const void *e2_, void *data_)
|
||
{
|
||
const int *e1 = (const int *)e1_;
|
||
const int *e2 = (const int *)e2_;
|
||
rpoamdbs_bb_data *bb_data = (rpoamdbs_bb_data *)data_;
|
||
return (bb_data[*e1].bb_to_pre - bb_data[*e2].bb_to_pre);
|
||
}
|
||
|
||
/* Compute the reverse completion number of a depth first search
|
||
on the SEME region denoted by the ENTRY edge and the EXIT_BBS set of
|
||
exit block indexes and store it in the array REV_POST_ORDER.
|
||
Also sets the EDGE_DFS_BACK edge flags according to this visitation
|
||
order.
|
||
Returns the number of nodes visited.
|
||
|
||
In case the function has unreachable blocks the number of nodes
|
||
visited does not include them.
|
||
|
||
If FOR_ITERATION is true then compute an RPO where SCCs form a
|
||
contiguous region in the RPO array.
|
||
*TOPLEVEL_SCC_EXTENTS if not NULL is filled with pairs of
|
||
*REV_POST_ORDER indexes denoting extents of the toplevel SCCs in
|
||
this region. */
|
||
|
||
int
|
||
rev_post_order_and_mark_dfs_back_seme (struct function *fn, edge entry,
|
||
bitmap exit_bbs, bool for_iteration,
|
||
int *rev_post_order,
|
||
vec<std::pair<int, int> >
|
||
*toplevel_scc_extents)
|
||
{
|
||
int rev_post_order_num = 0;
|
||
|
||
/* BB flag to track nodes that have been visited. */
|
||
auto_bb_flag visited (fn);
|
||
|
||
/* Lazily initialized per-BB data for the two DFS walks below. */
|
||
rpoamdbs_bb_data *bb_data
|
||
= XNEWVEC (rpoamdbs_bb_data, last_basic_block_for_fn (fn));
|
||
|
||
/* First DFS walk, loop discovery according to
|
||
A New Algorithm for Identifying Loops in Decompilation
|
||
by Tao Wei, Jian Mao, Wei Zou and You Chen of the Institute of
|
||
Computer Science and Technology of the Peking University. */
|
||
auto_vec<edge_iterator, 20> ei_stack (n_basic_blocks_for_fn (fn) + 1);
|
||
auto_bb_flag is_header (fn);
|
||
int depth = 1;
|
||
unsigned n_sccs = 0;
|
||
|
||
basic_block dest = entry->dest;
|
||
edge_iterator ei;
|
||
int pre_num = 0;
|
||
|
||
/* DFS process DEST. */
|
||
find_loops:
|
||
bb_data[dest->index].bb_to_pre = pre_num++;
|
||
bb_data[dest->index].depth = depth;
|
||
bb_data[dest->index].scc = -1;
|
||
depth++;
|
||
gcc_assert ((dest->flags & (is_header|visited)) == 0);
|
||
dest->flags |= visited;
|
||
ei = ei_start (dest->succs);
|
||
while (!ei_end_p (ei))
|
||
{
|
||
ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
|
||
if (bitmap_bit_p (exit_bbs, ei_edge (ei)->dest->index))
|
||
;
|
||
else if (!(ei_edge (ei)->dest->flags & visited))
|
||
{
|
||
ei_stack.quick_push (ei);
|
||
dest = ei_edge (ei)->dest;
|
||
/* DFS recurse on DEST. */
|
||
goto find_loops;
|
||
|
||
ret_from_find_loops:
|
||
/* Return point of DFS recursion. */
|
||
ei = ei_stack.pop ();
|
||
dest = ei_edge (ei)->src;
|
||
int header = bb_data[ei_edge (ei)->dest->index].scc;
|
||
tag_header (dest->index, header, bb_data);
|
||
depth = bb_data[dest->index].depth + 1;
|
||
}
|
||
else
|
||
{
|
||
if (bb_data[ei_edge (ei)->dest->index].depth > 0) /* on the stack */
|
||
{
|
||
ei_edge (ei)->flags |= EDGE_DFS_BACK;
|
||
n_sccs++;
|
||
ei_edge (ei)->dest->flags |= is_header;
|
||
::new (&bb_data[ei_edge (ei)->dest->index].scc_exits)
|
||
auto_vec<int, 2> ();
|
||
tag_header (dest->index, ei_edge (ei)->dest->index, bb_data);
|
||
}
|
||
else if (bb_data[ei_edge (ei)->dest->index].scc == -1)
|
||
;
|
||
else
|
||
{
|
||
int header = bb_data[ei_edge (ei)->dest->index].scc;
|
||
if (bb_data[header].depth > 0)
|
||
tag_header (dest->index, header, bb_data);
|
||
else
|
||
{
|
||
/* A re-entry into an existing loop. */
|
||
/* ??? Need to mark is_header? */
|
||
while (bb_data[header].scc != -1)
|
||
{
|
||
header = bb_data[header].scc;
|
||
if (bb_data[header].depth > 0)
|
||
{
|
||
tag_header (dest->index, header, bb_data);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
ei_next (&ei);
|
||
}
|
||
rev_post_order[rev_post_order_num++] = dest->index;
|
||
/* not on the stack anymore */
|
||
bb_data[dest->index].depth = -bb_data[dest->index].depth;
|
||
if (!ei_stack.is_empty ())
|
||
/* Return from DFS recursion. */
|
||
goto ret_from_find_loops;
|
||
|
||
/* Optimize for no SCCs found or !for_iteration. */
|
||
if (n_sccs == 0 || !for_iteration)
|
||
{
|
||
/* Clear the temporarily allocated flags. */
|
||
for (int i = 0; i < rev_post_order_num; ++i)
|
||
BASIC_BLOCK_FOR_FN (fn, rev_post_order[i])->flags
|
||
&= ~(is_header|visited);
|
||
/* And swap elements. */
|
||
for (int i = 0; i < rev_post_order_num/2; ++i)
|
||
std::swap (rev_post_order[i], rev_post_order[rev_post_order_num-i-1]);
|
||
XDELETEVEC (bb_data);
|
||
|
||
return rev_post_order_num;
|
||
}
|
||
|
||
/* Next find SCC exits, clear the visited flag and compute an upper bound
|
||
for the edge stack below. */
|
||
unsigned edge_count = 0;
|
||
for (int i = 0; i < rev_post_order_num; ++i)
|
||
{
|
||
int bb = rev_post_order[i];
|
||
BASIC_BLOCK_FOR_FN (fn, bb)->flags &= ~visited;
|
||
edge e;
|
||
FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (fn, bb)->succs)
|
||
{
|
||
if (bitmap_bit_p (exit_bbs, e->dest->index))
|
||
continue;
|
||
edge_count++;
|
||
/* if e is an exit from e->src, record it for
|
||
bb_data[e->src].scc. */
|
||
int src_scc = e->src->index;
|
||
if (!(e->src->flags & is_header))
|
||
src_scc = bb_data[src_scc].scc;
|
||
if (src_scc == -1)
|
||
continue;
|
||
int dest_scc = e->dest->index;
|
||
if (!(e->dest->flags & is_header))
|
||
dest_scc = bb_data[dest_scc].scc;
|
||
if (src_scc == dest_scc)
|
||
continue;
|
||
/* When dest_scc is nested insde src_scc it's not an
|
||
exit. */
|
||
int tem_dest_scc = dest_scc;
|
||
unsigned dest_scc_depth = 0;
|
||
while (tem_dest_scc != -1)
|
||
{
|
||
dest_scc_depth++;
|
||
if ((tem_dest_scc = bb_data[tem_dest_scc].scc) == src_scc)
|
||
break;
|
||
}
|
||
if (tem_dest_scc != -1)
|
||
continue;
|
||
/* When src_scc is nested inside dest_scc record an
|
||
exit from the outermost SCC this edge exits. */
|
||
int tem_src_scc = src_scc;
|
||
unsigned src_scc_depth = 0;
|
||
while (tem_src_scc != -1)
|
||
{
|
||
if (bb_data[tem_src_scc].scc == dest_scc)
|
||
{
|
||
edge_count++;
|
||
bb_data[tem_src_scc].scc_exits.safe_push (e->dest->index);
|
||
break;
|
||
}
|
||
tem_src_scc = bb_data[tem_src_scc].scc;
|
||
src_scc_depth++;
|
||
}
|
||
/* Else find the outermost SCC this edge exits (exits
|
||
from the inner SCCs are not important for the DFS
|
||
walk adjustment). Do so by computing the common
|
||
ancestor SCC where the immediate child it to the source
|
||
SCC is the exited SCC. */
|
||
if (tem_src_scc == -1)
|
||
{
|
||
edge_count++;
|
||
while (src_scc_depth > dest_scc_depth)
|
||
{
|
||
src_scc = bb_data[src_scc].scc;
|
||
src_scc_depth--;
|
||
}
|
||
while (dest_scc_depth > src_scc_depth)
|
||
{
|
||
dest_scc = bb_data[dest_scc].scc;
|
||
dest_scc_depth--;
|
||
}
|
||
while (bb_data[src_scc].scc != bb_data[dest_scc].scc)
|
||
{
|
||
src_scc = bb_data[src_scc].scc;
|
||
dest_scc = bb_data[dest_scc].scc;
|
||
}
|
||
bb_data[src_scc].scc_exits.safe_push (e->dest->index);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now the second DFS walk to compute a RPO where the extent of SCCs
|
||
is minimized thus SCC members are adjacent in the RPO array.
|
||
This is done by performing a DFS walk computing RPO with first visiting
|
||
extra direct edges from SCC entry to its exits.
|
||
That simulates a DFS walk over the graph with SCCs collapsed and
|
||
walking the SCCs themselves only when all outgoing edges from the
|
||
SCCs have been visited.
|
||
SCC_END[scc-header-index] is the position in the RPO array of the
|
||
last member of the SCC. */
|
||
auto_vec<std::pair<basic_block, basic_block>, 20> estack (edge_count + 1);
|
||
int idx = rev_post_order_num;
|
||
basic_block edest;
|
||
dest = entry->dest;
|
||
|
||
/* DFS process DEST. */
|
||
dfs_rpo:
|
||
gcc_checking_assert ((dest->flags & visited) == 0);
|
||
/* Verify we enter SCCs through the same header and SCC nesting appears
|
||
the same. */
|
||
gcc_assert (bb_data[dest->index].scc == -1
|
||
|| (BASIC_BLOCK_FOR_FN (fn, bb_data[dest->index].scc)->flags
|
||
& visited));
|
||
dest->flags |= visited;
|
||
bb_data[dest->index].scc_end = -1;
|
||
if ((dest->flags & is_header)
|
||
&& !bb_data[dest->index].scc_exits.is_empty ())
|
||
{
|
||
/* Push the all SCC exits as outgoing edges from its header to
|
||
be visited first.
|
||
To process exits in the same relative order as in the first
|
||
DFS walk sort them after their destination PRE order index. */
|
||
gcc_sort_r (&bb_data[dest->index].scc_exits[0],
|
||
bb_data[dest->index].scc_exits.length (),
|
||
sizeof (int), cmp_edge_dest_pre, bb_data);
|
||
/* Process edges in reverse to match previous DFS walk order. */
|
||
for (int i = bb_data[dest->index].scc_exits.length () - 1; i >= 0; --i)
|
||
estack.quick_push (std::make_pair
|
||
(dest, BASIC_BLOCK_FOR_FN (fn, bb_data[dest->index].scc_exits[i])));
|
||
}
|
||
else
|
||
{
|
||
if (dest->flags & is_header)
|
||
bb_data[dest->index].scc_end = idx - 1;
|
||
/* Push the edge vector in reverse to match the iteration order
|
||
from the DFS walk above. */
|
||
for (int i = EDGE_COUNT (dest->succs) - 1; i >= 0; --i)
|
||
if (!bitmap_bit_p (exit_bbs, EDGE_SUCC (dest, i)->dest->index))
|
||
estack.quick_push (std::make_pair (dest,
|
||
EDGE_SUCC (dest, i)->dest));
|
||
}
|
||
while (!estack.is_empty ()
|
||
&& estack.last ().first == dest)
|
||
{
|
||
edest = estack.last ().second;
|
||
if (!(edest->flags & visited))
|
||
{
|
||
dest = edest;
|
||
/* DFS recurse on DEST. */
|
||
goto dfs_rpo;
|
||
|
||
ret_from_dfs_rpo:
|
||
/* Return point of DFS recursion. */
|
||
dest = estack.last ().first;
|
||
}
|
||
estack.pop ();
|
||
/* If we processed all SCC exits from DEST mark the SCC end
|
||
since all RPO entries up to DEST itself will now belong
|
||
to its SCC. The special-case of no SCC exits is already
|
||
dealt with above. */
|
||
if (dest->flags & is_header
|
||
/* When the last exit edge was processed mark the SCC end
|
||
and push the regular edges. */
|
||
&& bb_data[dest->index].scc_end == -1
|
||
&& (estack.is_empty ()
|
||
|| estack.last ().first != dest))
|
||
{
|
||
bb_data[dest->index].scc_end = idx - 1;
|
||
/* Push the edge vector in reverse to match the iteration order
|
||
from the DFS walk above. */
|
||
for (int i = EDGE_COUNT (dest->succs) - 1; i >= 0; --i)
|
||
if (!bitmap_bit_p (exit_bbs, EDGE_SUCC (dest, i)->dest->index))
|
||
estack.quick_push (std::make_pair (dest,
|
||
EDGE_SUCC (dest, i)->dest));
|
||
}
|
||
}
|
||
rev_post_order[--idx] = dest->index;
|
||
if (!estack.is_empty ())
|
||
/* Return from DFS recursion. */
|
||
goto ret_from_dfs_rpo;
|
||
|
||
/* Each SCC extends are from the position of the header inside
|
||
the RPO array up to RPO array index scc_end[header-index]. */
|
||
if (toplevel_scc_extents)
|
||
for (int i = 0; i < rev_post_order_num; i++)
|
||
{
|
||
basic_block bb = BASIC_BLOCK_FOR_FN (fn, rev_post_order[i]);
|
||
if (bb->flags & is_header)
|
||
{
|
||
toplevel_scc_extents->safe_push
|
||
(std::make_pair (i, bb_data[bb->index].scc_end));
|
||
i = bb_data[bb->index].scc_end;
|
||
}
|
||
}
|
||
|
||
/* Clear the temporarily allocated flags and free memory. */
|
||
for (int i = 0; i < rev_post_order_num; ++i)
|
||
{
|
||
basic_block bb = BASIC_BLOCK_FOR_FN (fn, rev_post_order[i]);
|
||
if (bb->flags & is_header)
|
||
bb_data[bb->index].scc_exits.~scc_exit_vec_t ();
|
||
bb->flags &= ~(visited|is_header);
|
||
}
|
||
|
||
XDELETEVEC (bb_data);
|
||
|
||
return rev_post_order_num;
|
||
}
|
||
|
||
|
||
|
||
/* Compute the depth first search order on the _reverse_ graph and
|
||
store it in the array DFS_ORDER, marking the nodes visited in VISITED.
|
||
Returns the number of nodes visited.
|
||
|
||
The computation is split into three pieces:
|
||
|
||
flow_dfs_compute_reverse_init () creates the necessary data
|
||
structures.
|
||
|
||
flow_dfs_compute_reverse_add_bb () adds a basic block to the data
|
||
structures. The block will start the search.
|
||
|
||
flow_dfs_compute_reverse_execute () continues (or starts) the
|
||
search using the block on the top of the stack, stopping when the
|
||
stack is empty.
|
||
|
||
flow_dfs_compute_reverse_finish () destroys the necessary data
|
||
structures.
|
||
|
||
Thus, the user will probably call ..._init(), call ..._add_bb() to
|
||
add a beginning basic block to the stack, call ..._execute(),
|
||
possibly add another bb to the stack and again call ..._execute(),
|
||
..., and finally call _finish(). */
|
||
|
||
/* Initialize the data structures used for depth-first search on the
|
||
reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
|
||
added to the basic block stack. DATA is the current depth-first
|
||
search context. If INITIALIZE_STACK is nonzero, there is an
|
||
element on the stack. */
|
||
|
||
depth_first_search::depth_first_search () :
|
||
m_stack (n_basic_blocks_for_fn (cfun)),
|
||
m_visited_blocks (last_basic_block_for_fn (cfun))
|
||
{
|
||
bitmap_clear (m_visited_blocks);
|
||
}
|
||
|
||
/* Add the specified basic block to the top of the dfs data
|
||
structures. When the search continues, it will start at the
|
||
block. */
|
||
|
||
void
|
||
depth_first_search::add_bb (basic_block bb)
|
||
{
|
||
m_stack.quick_push (bb);
|
||
bitmap_set_bit (m_visited_blocks, bb->index);
|
||
}
|
||
|
||
/* Continue the depth-first search through the reverse graph starting with the
|
||
block at the stack's top and ending when the stack is empty. Visited nodes
|
||
are marked. Returns an unvisited basic block, or NULL if there is none
|
||
available. */
|
||
|
||
basic_block
|
||
depth_first_search::execute (basic_block last_unvisited)
|
||
{
|
||
basic_block bb;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
while (!m_stack.is_empty ())
|
||
{
|
||
bb = m_stack.pop ();
|
||
|
||
/* Perform depth-first search on adjacent vertices. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (!bitmap_bit_p (m_visited_blocks, e->src->index))
|
||
add_bb (e->src);
|
||
}
|
||
|
||
/* Determine if there are unvisited basic blocks. */
|
||
FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
|
||
if (!bitmap_bit_p (m_visited_blocks, bb->index))
|
||
return bb;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Performs dfs search from BB over vertices satisfying PREDICATE;
|
||
if REVERSE, go against direction of edges. Returns number of blocks
|
||
found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
|
||
int
|
||
dfs_enumerate_from (basic_block bb, int reverse,
|
||
bool (*predicate) (const_basic_block, const void *),
|
||
basic_block *rslt, int rslt_max, const void *data)
|
||
{
|
||
basic_block *st, lbb;
|
||
int sp = 0, tv = 0;
|
||
|
||
auto_bb_flag visited (cfun);
|
||
|
||
#define MARK_VISITED(BB) ((BB)->flags |= visited)
|
||
#define UNMARK_VISITED(BB) ((BB)->flags &= ~visited)
|
||
#define VISITED_P(BB) (((BB)->flags & visited) != 0)
|
||
|
||
st = XNEWVEC (basic_block, rslt_max);
|
||
rslt[tv++] = st[sp++] = bb;
|
||
MARK_VISITED (bb);
|
||
while (sp)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
lbb = st[--sp];
|
||
if (reverse)
|
||
{
|
||
FOR_EACH_EDGE (e, ei, lbb->preds)
|
||
if (!VISITED_P (e->src) && predicate (e->src, data))
|
||
{
|
||
gcc_assert (tv != rslt_max);
|
||
rslt[tv++] = st[sp++] = e->src;
|
||
MARK_VISITED (e->src);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
FOR_EACH_EDGE (e, ei, lbb->succs)
|
||
if (!VISITED_P (e->dest) && predicate (e->dest, data))
|
||
{
|
||
gcc_assert (tv != rslt_max);
|
||
rslt[tv++] = st[sp++] = e->dest;
|
||
MARK_VISITED (e->dest);
|
||
}
|
||
}
|
||
}
|
||
free (st);
|
||
for (sp = 0; sp < tv; sp++)
|
||
UNMARK_VISITED (rslt[sp]);
|
||
return tv;
|
||
#undef MARK_VISITED
|
||
#undef UNMARK_VISITED
|
||
#undef VISITED_P
|
||
}
|
||
|
||
|
||
/* Compute dominance frontiers, ala Harvey, Ferrante, et al.
|
||
|
||
This algorithm can be found in Timothy Harvey's PhD thesis, at
|
||
http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
|
||
dominance algorithms.
|
||
|
||
First, we identify each join point, j (any node with more than one
|
||
incoming edge is a join point).
|
||
|
||
We then examine each predecessor, p, of j and walk up the dominator tree
|
||
starting at p.
|
||
|
||
We stop the walk when we reach j's immediate dominator - j is in the
|
||
dominance frontier of each of the nodes in the walk, except for j's
|
||
immediate dominator. Intuitively, all of the rest of j's dominators are
|
||
shared by j's predecessors as well.
|
||
Since they dominate j, they will not have j in their dominance frontiers.
|
||
|
||
The number of nodes touched by this algorithm is equal to the size
|
||
of the dominance frontiers, no more, no less.
|
||
*/
|
||
|
||
void
|
||
compute_dominance_frontiers (bitmap_head *frontiers)
|
||
{
|
||
timevar_push (TV_DOM_FRONTIERS);
|
||
|
||
edge p;
|
||
edge_iterator ei;
|
||
basic_block b;
|
||
FOR_EACH_BB_FN (b, cfun)
|
||
{
|
||
if (EDGE_COUNT (b->preds) >= 2)
|
||
{
|
||
basic_block domsb = get_immediate_dominator (CDI_DOMINATORS, b);
|
||
FOR_EACH_EDGE (p, ei, b->preds)
|
||
{
|
||
basic_block runner = p->src;
|
||
if (runner == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
while (runner != domsb)
|
||
{
|
||
if (!bitmap_set_bit (&frontiers[runner->index], b->index))
|
||
break;
|
||
runner = get_immediate_dominator (CDI_DOMINATORS, runner);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
timevar_pop (TV_DOM_FRONTIERS);
|
||
}
|
||
|
||
/* Given a set of blocks with variable definitions (DEF_BLOCKS),
|
||
return a bitmap with all the blocks in the iterated dominance
|
||
frontier of the blocks in DEF_BLOCKS. DFS contains dominance
|
||
frontier information as returned by compute_dominance_frontiers.
|
||
|
||
The resulting set of blocks are the potential sites where PHI nodes
|
||
are needed. The caller is responsible for freeing the memory
|
||
allocated for the return value. */
|
||
|
||
bitmap
|
||
compute_idf (bitmap def_blocks, bitmap_head *dfs)
|
||
{
|
||
bitmap_iterator bi;
|
||
unsigned bb_index, i;
|
||
bitmap phi_insertion_points;
|
||
|
||
phi_insertion_points = BITMAP_ALLOC (NULL);
|
||
|
||
/* Seed the work set with all the blocks in DEF_BLOCKS. */
|
||
auto_bitmap work_set;
|
||
bitmap_copy (work_set, def_blocks);
|
||
bitmap_tree_view (work_set);
|
||
|
||
/* Pop a block off the workset, add every block that appears in
|
||
the original block's DF that we have not already processed to
|
||
the workset. Iterate until the workset is empty. Blocks
|
||
which are added to the workset are potential sites for
|
||
PHI nodes. */
|
||
while (!bitmap_empty_p (work_set))
|
||
{
|
||
/* The dominance frontier of a block is blocks after it so iterating
|
||
on earlier blocks first is better.
|
||
??? Basic blocks are by no means guaranteed to be ordered in
|
||
optimal order for this iteration. */
|
||
bb_index = bitmap_first_set_bit (work_set);
|
||
bitmap_clear_bit (work_set, bb_index);
|
||
|
||
/* Since the registration of NEW -> OLD name mappings is done
|
||
separately from the call to update_ssa, when updating the SSA
|
||
form, the basic blocks where new and/or old names are defined
|
||
may have disappeared by CFG cleanup calls. In this case,
|
||
we may pull a non-existing block from the work stack. */
|
||
gcc_checking_assert (bb_index
|
||
< (unsigned) last_basic_block_for_fn (cfun));
|
||
|
||
EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs[bb_index], phi_insertion_points,
|
||
0, i, bi)
|
||
{
|
||
bitmap_set_bit (work_set, i);
|
||
bitmap_set_bit (phi_insertion_points, i);
|
||
}
|
||
}
|
||
|
||
return phi_insertion_points;
|
||
}
|
||
|
||
/* Intersection and union of preds/succs for sbitmap based data flow
|
||
solvers. All four functions defined below take the same arguments:
|
||
B is the basic block to perform the operation for. DST is the
|
||
target sbitmap, i.e. the result. SRC is an sbitmap vector of size
|
||
last_basic_block so that it can be indexed with basic block indices.
|
||
DST may be (but does not have to be) SRC[B->index]. */
|
||
|
||
/* Set the bitmap DST to the intersection of SRC of successors of
|
||
basic block B. */
|
||
|
||
void
|
||
bitmap_intersection_of_succs (sbitmap dst, sbitmap *src, basic_block b)
|
||
{
|
||
unsigned int set_size = dst->size;
|
||
edge e;
|
||
unsigned ix;
|
||
|
||
for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++)
|
||
{
|
||
e = EDGE_SUCC (b, ix);
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
bitmap_copy (dst, src[e->dest->index]);
|
||
break;
|
||
}
|
||
|
||
if (e == 0)
|
||
bitmap_ones (dst);
|
||
else
|
||
for (++ix; ix < EDGE_COUNT (b->succs); ix++)
|
||
{
|
||
unsigned int i;
|
||
SBITMAP_ELT_TYPE *p, *r;
|
||
|
||
e = EDGE_SUCC (b, ix);
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
p = src[e->dest->index]->elms;
|
||
r = dst->elms;
|
||
for (i = 0; i < set_size; i++)
|
||
*r++ &= *p++;
|
||
}
|
||
}
|
||
|
||
/* Set the bitmap DST to the intersection of SRC of predecessors of
|
||
basic block B. */
|
||
|
||
void
|
||
bitmap_intersection_of_preds (sbitmap dst, sbitmap *src, basic_block b)
|
||
{
|
||
unsigned int set_size = dst->size;
|
||
edge e;
|
||
unsigned ix;
|
||
|
||
for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
|
||
{
|
||
e = EDGE_PRED (b, ix);
|
||
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
bitmap_copy (dst, src[e->src->index]);
|
||
break;
|
||
}
|
||
|
||
if (e == 0)
|
||
bitmap_ones (dst);
|
||
else
|
||
for (++ix; ix < EDGE_COUNT (b->preds); ix++)
|
||
{
|
||
unsigned int i;
|
||
SBITMAP_ELT_TYPE *p, *r;
|
||
|
||
e = EDGE_PRED (b, ix);
|
||
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
p = src[e->src->index]->elms;
|
||
r = dst->elms;
|
||
for (i = 0; i < set_size; i++)
|
||
*r++ &= *p++;
|
||
}
|
||
}
|
||
|
||
/* Set the bitmap DST to the union of SRC of successors of
|
||
basic block B. */
|
||
|
||
void
|
||
bitmap_union_of_succs (sbitmap dst, sbitmap *src, basic_block b)
|
||
{
|
||
unsigned int set_size = dst->size;
|
||
edge e;
|
||
unsigned ix;
|
||
|
||
for (ix = 0; ix < EDGE_COUNT (b->succs); ix++)
|
||
{
|
||
e = EDGE_SUCC (b, ix);
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
bitmap_copy (dst, src[e->dest->index]);
|
||
break;
|
||
}
|
||
|
||
if (ix == EDGE_COUNT (b->succs))
|
||
bitmap_clear (dst);
|
||
else
|
||
for (ix++; ix < EDGE_COUNT (b->succs); ix++)
|
||
{
|
||
unsigned int i;
|
||
SBITMAP_ELT_TYPE *p, *r;
|
||
|
||
e = EDGE_SUCC (b, ix);
|
||
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
p = src[e->dest->index]->elms;
|
||
r = dst->elms;
|
||
for (i = 0; i < set_size; i++)
|
||
*r++ |= *p++;
|
||
}
|
||
}
|
||
|
||
/* Set the bitmap DST to the union of SRC of predecessors of
|
||
basic block B. */
|
||
|
||
void
|
||
bitmap_union_of_preds (sbitmap dst, sbitmap *src, basic_block b)
|
||
{
|
||
unsigned int set_size = dst->size;
|
||
edge e;
|
||
unsigned ix;
|
||
|
||
for (ix = 0; ix < EDGE_COUNT (b->preds); ix++)
|
||
{
|
||
e = EDGE_PRED (b, ix);
|
||
if (e->src== ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
bitmap_copy (dst, src[e->src->index]);
|
||
break;
|
||
}
|
||
|
||
if (ix == EDGE_COUNT (b->preds))
|
||
bitmap_clear (dst);
|
||
else
|
||
for (ix++; ix < EDGE_COUNT (b->preds); ix++)
|
||
{
|
||
unsigned int i;
|
||
SBITMAP_ELT_TYPE *p, *r;
|
||
|
||
e = EDGE_PRED (b, ix);
|
||
if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
||
continue;
|
||
|
||
p = src[e->src->index]->elms;
|
||
r = dst->elms;
|
||
for (i = 0; i < set_size; i++)
|
||
*r++ |= *p++;
|
||
}
|
||
}
|
||
|
||
/* Returns the list of basic blocks in the function in an order that guarantees
|
||
that if a block X has just a single predecessor Y, then Y is after X in the
|
||
ordering. */
|
||
|
||
basic_block *
|
||
single_pred_before_succ_order (void)
|
||
{
|
||
basic_block x, y;
|
||
basic_block *order = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
|
||
unsigned n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
|
||
unsigned np, i;
|
||
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
||
|
||
#define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
|
||
#define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
|
||
|
||
bitmap_clear (visited);
|
||
|
||
MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
||
FOR_EACH_BB_FN (x, cfun)
|
||
{
|
||
if (VISITED_P (x))
|
||
continue;
|
||
|
||
/* Walk the predecessors of x as long as they have precisely one
|
||
predecessor and add them to the list, so that they get stored
|
||
after x. */
|
||
for (y = x, np = 1;
|
||
single_pred_p (y) && !VISITED_P (single_pred (y));
|
||
y = single_pred (y))
|
||
np++;
|
||
for (y = x, i = n - np;
|
||
single_pred_p (y) && !VISITED_P (single_pred (y));
|
||
y = single_pred (y), i++)
|
||
{
|
||
order[i] = y;
|
||
MARK_VISITED (y);
|
||
}
|
||
order[i] = y;
|
||
MARK_VISITED (y);
|
||
|
||
gcc_assert (i == n - 1);
|
||
n -= np;
|
||
}
|
||
|
||
gcc_assert (n == 0);
|
||
return order;
|
||
|
||
#undef MARK_VISITED
|
||
#undef VISITED_P
|
||
}
|
||
|
||
/* Ignoring loop backedges, if BB has precisely one incoming edge then
|
||
return that edge. Otherwise return NULL.
|
||
|
||
When IGNORE_NOT_EXECUTABLE is true, also ignore edges that are not marked
|
||
as executable. */
|
||
|
||
edge
|
||
single_pred_edge_ignoring_loop_edges (basic_block bb,
|
||
bool ignore_not_executable)
|
||
{
|
||
edge retval = NULL;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
/* A loop back edge can be identified by the destination of
|
||
the edge dominating the source of the edge. */
|
||
if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
|
||
continue;
|
||
|
||
/* We can safely ignore edges that are not executable. */
|
||
if (ignore_not_executable
|
||
&& (e->flags & EDGE_EXECUTABLE) == 0)
|
||
continue;
|
||
|
||
/* If we have already seen a non-loop edge, then we must have
|
||
multiple incoming non-loop edges and thus we return NULL. */
|
||
if (retval)
|
||
return NULL;
|
||
|
||
/* This is the first non-loop incoming edge we have found. Record
|
||
it. */
|
||
retval = e;
|
||
}
|
||
|
||
return retval;
|
||
}
|