mirror of
https://forge.sourceware.org/marek/gcc.git
synced 2026-02-21 19:35:36 -05:00
When trying to skip a virtual PHI during an alias walk we have to direct a possible VN translation hook to not use valueization when walking a backedge. But this backedge detection was overly optimistic, not honoring irreducible regions. The following hookizes the backedge detection so VN can properly flag edges that are back with respect to its particular CFG traversal. PR tree-optimization/123298 * tree-ssa-alias.h (get_continuation_for_phi): Take a gphi *, add is_backedge hook argument. (walk_non_aliased_vuses): Add is_backedge hook argument. * tree-ssa-alias.cc (maybe_skip_until): Adjust. (get_continuation_for_phi): Use new hook to classify an edge into the PHI as backedge. (walk_non_aliased_vuses): Adjust. * gimple-lower-bitint.cc (bitint_dom_walker::before_dom_children): Likewise. * ipa-prop.cc (determine_known_aggregate_parts): Likewise. * tree-ssa-scopedtables.cc (avail_exprs_stack::lookup_avail_expr): Likewise. * tree-ssa-pre.cc (translate_vuse_through_block): Likewise. * tree-ssa-sccvn.cc (vn_bb_to_rpo): Make BB to RPO order mapping accessible from new hook. (do_rpo_vn_1): Likewise. (vn_is_backedge): New hook to classify edge. (vn_reference_lookup_pieces): Adjust. (vn_reference_lookup): Likewise. * gcc.dg/torture/pr123298.c: New testcase.
1243 lines
36 KiB
C++
1243 lines
36 KiB
C++
/* Header file for SSA dominator optimizations.
|
|
Copyright (C) 2013-2026 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "function.h"
|
|
#include "basic-block.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "tree-pass.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "tree-ssa-scopedtables.h"
|
|
#include "tree-ssa-threadedge.h"
|
|
#include "stor-layout.h"
|
|
#include "fold-const.h"
|
|
#include "tree-eh.h"
|
|
#include "internal-fn.h"
|
|
#include "tree-dfa.h"
|
|
#include "options.h"
|
|
|
|
static bool hashable_expr_equal_p (const struct hashable_expr *,
|
|
const struct hashable_expr *);
|
|
|
|
/* Initialize local stacks for this optimizer and record equivalences
|
|
upon entry to BB. Equivalences can come from the edge traversed to
|
|
reach BB or they may come from PHI nodes at the start of BB. */
|
|
|
|
/* Pop items off the unwinding stack, removing each from the hash table
|
|
until a marker is encountered. */
|
|
|
|
void
|
|
avail_exprs_stack::pop_to_marker ()
|
|
{
|
|
/* Remove all the expressions made available in this block. */
|
|
while (m_stack.length () > 0)
|
|
{
|
|
std::pair<expr_hash_elt_t, expr_hash_elt_t> victim = m_stack.pop ();
|
|
expr_hash_elt **slot;
|
|
|
|
if (victim.first == NULL)
|
|
break;
|
|
|
|
/* This must precede the actual removal from the hash table,
|
|
as ELEMENT and the table entry may share a call argument
|
|
vector which will be freed during removal. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "<<<< ");
|
|
victim.first->print (dump_file);
|
|
}
|
|
|
|
slot = m_avail_exprs->find_slot (victim.first, NO_INSERT);
|
|
gcc_assert (slot && *slot == victim.first);
|
|
if (victim.second != NULL)
|
|
{
|
|
delete *slot;
|
|
*slot = victim.second;
|
|
}
|
|
else
|
|
m_avail_exprs->clear_slot (slot);
|
|
}
|
|
}
|
|
|
|
/* Add <ELT1,ELT2> to the unwinding stack so they can be later removed
|
|
from the hash table. */
|
|
|
|
void
|
|
avail_exprs_stack::record_expr (class expr_hash_elt *elt1,
|
|
class expr_hash_elt *elt2,
|
|
char type)
|
|
{
|
|
if (elt1 && dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "%c>>> ", type);
|
|
elt1->print (dump_file);
|
|
}
|
|
|
|
m_stack.safe_push (std::pair<expr_hash_elt_t, expr_hash_elt_t> (elt1, elt2));
|
|
}
|
|
|
|
/* Helper for walk_non_aliased_vuses. Determine if we arrived at
|
|
the desired memory state. */
|
|
|
|
static void *
|
|
vuse_eq (ao_ref *, tree vuse1, void *data)
|
|
{
|
|
tree vuse2 = (tree) data;
|
|
if (vuse1 == vuse2)
|
|
return data;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* We looked for STMT in the hash table, but did not find it.
|
|
|
|
If STMT is an assignment from a binary operator, we may know something
|
|
about the operands relationship to each other which would allow
|
|
us to derive a constant value for the RHS of STMT. */
|
|
|
|
tree
|
|
avail_exprs_stack::simplify_binary_operation (gimple *stmt,
|
|
class expr_hash_elt element)
|
|
{
|
|
if (is_gimple_assign (stmt))
|
|
{
|
|
struct hashable_expr *expr = element.expr ();
|
|
if (expr->kind == EXPR_BINARY)
|
|
{
|
|
enum tree_code code = expr->ops.binary.op;
|
|
|
|
switch (code)
|
|
{
|
|
/* For these cases, if we know some relationships
|
|
between the operands, then we can simplify. */
|
|
case MIN_EXPR:
|
|
case MAX_EXPR:
|
|
{
|
|
/* Build a simple equality expr and query the hash table
|
|
for it. */
|
|
struct hashable_expr expr;
|
|
expr.type = boolean_type_node;
|
|
expr.kind = EXPR_BINARY;
|
|
expr.ops.binary.op = LE_EXPR;
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
|
if (tree_swap_operands_p (rhs1, rhs2))
|
|
std::swap (rhs1, rhs2);
|
|
expr.ops.binary.opnd0 = rhs1;
|
|
expr.ops.binary.opnd1 = rhs2;
|
|
class expr_hash_elt element2 (&expr, NULL_TREE);
|
|
expr_hash_elt **slot
|
|
= m_avail_exprs->find_slot (&element2, NO_INSERT);
|
|
|
|
/* If the query was successful and returned a nonzero
|
|
result, then we know the result of the MIN/MAX, even
|
|
though it is not a constant value. */
|
|
if (slot && *slot && integer_onep ((*slot)->lhs ()))
|
|
return code == MIN_EXPR ? rhs1 : rhs2;
|
|
|
|
/* Try again, this time with GE_EXPR. */
|
|
expr.ops.binary.op = GE_EXPR;
|
|
class expr_hash_elt element3 (&expr, NULL_TREE);
|
|
slot = m_avail_exprs->find_slot (&element3, NO_INSERT);
|
|
|
|
/* If the query was successful and returned a nonzero
|
|
result, then we know the result of the MIN/MAX, even
|
|
though it is not a constant value. */
|
|
if (slot && *slot && integer_onep ((*slot)->lhs ()))
|
|
return code == MIN_EXPR ? rhs2 : rhs1;
|
|
|
|
break;
|
|
}
|
|
|
|
/* For these cases, if we know the operands
|
|
are equal, then we know the result. */
|
|
case BIT_IOR_EXPR:
|
|
case BIT_AND_EXPR:
|
|
case BIT_XOR_EXPR:
|
|
case MINUS_EXPR:
|
|
case TRUNC_DIV_EXPR:
|
|
case CEIL_DIV_EXPR:
|
|
case FLOOR_DIV_EXPR:
|
|
case ROUND_DIV_EXPR:
|
|
case EXACT_DIV_EXPR:
|
|
case TRUNC_MOD_EXPR:
|
|
case CEIL_MOD_EXPR:
|
|
case FLOOR_MOD_EXPR:
|
|
case ROUND_MOD_EXPR:
|
|
{
|
|
/* Build a simple equality expr and query the hash table
|
|
for it. */
|
|
struct hashable_expr expr;
|
|
expr.type = boolean_type_node;
|
|
expr.kind = EXPR_BINARY;
|
|
expr.ops.binary.op = EQ_EXPR;
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
|
if (tree_swap_operands_p (rhs1, rhs2))
|
|
std::swap (rhs1, rhs2);
|
|
expr.ops.binary.opnd0 = rhs1;
|
|
expr.ops.binary.opnd1 = rhs2;
|
|
class expr_hash_elt element2 (&expr, NULL_TREE);
|
|
expr_hash_elt **slot
|
|
= m_avail_exprs->find_slot (&element2, NO_INSERT);
|
|
tree result_type = TREE_TYPE (gimple_assign_lhs (stmt));
|
|
|
|
/* If the query was successful and returned a nonzero
|
|
result, then we know that the operands of the binary
|
|
expression are the same. In many cases this allows
|
|
us to compute a constant result of the expression
|
|
at compile time, even if we do not know the exact
|
|
values of the operands. */
|
|
if (slot && *slot && integer_onep ((*slot)->lhs ()))
|
|
{
|
|
switch (code)
|
|
{
|
|
case BIT_IOR_EXPR:
|
|
case BIT_AND_EXPR:
|
|
return gimple_assign_rhs1 (stmt);
|
|
|
|
case MINUS_EXPR:
|
|
/* This is unsafe for certain floats even in non-IEEE
|
|
formats. In IEEE, it is unsafe because it does
|
|
wrong for NaNs. */
|
|
if (FLOAT_TYPE_P (result_type)
|
|
&& HONOR_NANS (result_type))
|
|
break;
|
|
/* FALLTHRU */
|
|
case BIT_XOR_EXPR:
|
|
case TRUNC_MOD_EXPR:
|
|
case CEIL_MOD_EXPR:
|
|
case FLOOR_MOD_EXPR:
|
|
case ROUND_MOD_EXPR:
|
|
return build_zero_cst (result_type);
|
|
|
|
case TRUNC_DIV_EXPR:
|
|
case CEIL_DIV_EXPR:
|
|
case FLOOR_DIV_EXPR:
|
|
case ROUND_DIV_EXPR:
|
|
case EXACT_DIV_EXPR:
|
|
/* Avoid _Fract types where we can't build 1. */
|
|
if (ALL_FRACT_MODE_P (TYPE_MODE (result_type)))
|
|
break;
|
|
return build_one_cst (result_type);
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Search for an existing instance of STMT in the AVAIL_EXPRS_STACK table.
|
|
If found, return its LHS. Otherwise insert STMT in the table and
|
|
return NULL_TREE.
|
|
|
|
Also, when an expression is first inserted in the table, it is also
|
|
is also added to AVAIL_EXPRS_STACK, so that it can be removed when
|
|
we finish processing this block and its children. */
|
|
|
|
tree
|
|
avail_exprs_stack::lookup_avail_expr (gimple *stmt, bool insert, bool tbaa_p,
|
|
expr_hash_elt **elt)
|
|
{
|
|
expr_hash_elt **slot;
|
|
tree lhs;
|
|
|
|
/* Get LHS of phi, assignment, or call; else NULL_TREE. */
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
lhs = gimple_phi_result (stmt);
|
|
else
|
|
lhs = gimple_get_lhs (stmt);
|
|
|
|
class expr_hash_elt element (stmt, lhs);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "LKUP ");
|
|
element.print (dump_file);
|
|
}
|
|
|
|
/* Don't bother remembering constant assignments and copy operations.
|
|
Constants and copy operations are handled by the constant/copy propagator
|
|
in optimize_stmt. */
|
|
if (element.expr()->kind == EXPR_SINGLE
|
|
&& (TREE_CODE (element.expr()->ops.single.rhs) == SSA_NAME
|
|
|| is_gimple_min_invariant (element.expr()->ops.single.rhs)))
|
|
return NULL_TREE;
|
|
|
|
/* Finally try to find the expression in the main expression hash table. */
|
|
slot = m_avail_exprs->find_slot (&element, (insert ? INSERT : NO_INSERT));
|
|
if (slot == NULL)
|
|
{
|
|
return NULL_TREE;
|
|
}
|
|
else if (*slot == NULL)
|
|
{
|
|
/* We have, in effect, allocated *SLOT for ELEMENT at this point.
|
|
We must initialize *SLOT to a real entry, even if we found a
|
|
way to prove ELEMENT was a constant after not finding ELEMENT
|
|
in the hash table.
|
|
|
|
An uninitialized or empty slot is an indication no prior objects
|
|
entered into the hash table had a hash collection with ELEMENT.
|
|
|
|
If we fail to do so and had such entries in the table, they
|
|
would become unreachable. */
|
|
class expr_hash_elt *element2 = new expr_hash_elt (element);
|
|
*slot = element2;
|
|
|
|
/* If we did not find the expression in the hash table, we may still
|
|
be able to produce a result for some expressions. */
|
|
tree retval = avail_exprs_stack::simplify_binary_operation (stmt,
|
|
element);
|
|
|
|
record_expr (element2, NULL, '2');
|
|
return retval;
|
|
}
|
|
|
|
/* If we found a redundant memory operation do an alias walk to
|
|
check if we can re-use it. */
|
|
if (gimple_vuse (stmt) != (*slot)->vop ())
|
|
{
|
|
tree vuse1 = (*slot)->vop ();
|
|
tree vuse2 = gimple_vuse (stmt);
|
|
/* If we have a load of a register and a candidate in the
|
|
hash with vuse1 then try to reach its stmt by walking
|
|
up the virtual use-def chain using walk_non_aliased_vuses.
|
|
But don't do this when removing expressions from the hash. */
|
|
ao_ref ref;
|
|
unsigned limit = param_sccvn_max_alias_queries_per_access;
|
|
if (!(vuse1 && vuse2
|
|
&& gimple_assign_single_p (stmt)
|
|
&& TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
|
|
&& (ao_ref_init (&ref, gimple_assign_rhs1 (stmt)),
|
|
ref.base_alias_set = ref.ref_alias_set = tbaa_p ? -1 : 0, true)
|
|
&& walk_non_aliased_vuses (&ref, vuse2, true, vuse_eq, NULL, NULL,
|
|
NULL, limit, vuse1) != NULL))
|
|
{
|
|
if (insert)
|
|
{
|
|
class expr_hash_elt *element2 = new expr_hash_elt (element);
|
|
|
|
/* Insert the expr into the hash by replacing the current
|
|
entry and recording the value to restore in the
|
|
avail_exprs_stack. */
|
|
record_expr (element2, *slot, '2');
|
|
*slot = element2;
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
|
|
/* Extract the LHS of the assignment so that it can be used as the current
|
|
definition of another variable. */
|
|
lhs = (*slot)->lhs ();
|
|
if (elt)
|
|
*elt = *slot;
|
|
|
|
/* Valueize the result. */
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
|
{
|
|
tree tem = SSA_NAME_VALUE (lhs);
|
|
if (tem)
|
|
lhs = tem;
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "FIND: ");
|
|
print_generic_expr (dump_file, lhs);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
return lhs;
|
|
}
|
|
|
|
/* Enter condition equivalence P into the hash table.
|
|
|
|
This indicates that a conditional expression has a known
|
|
boolean value. */
|
|
|
|
void
|
|
avail_exprs_stack::record_cond (cond_equivalence *p)
|
|
{
|
|
class expr_hash_elt *element = new expr_hash_elt (&p->cond, p->value);
|
|
expr_hash_elt **slot;
|
|
|
|
slot = m_avail_exprs->find_slot_with_hash (element, element->hash (), INSERT);
|
|
if (*slot == NULL)
|
|
{
|
|
*slot = element;
|
|
record_expr (element, NULL, '1');
|
|
}
|
|
else
|
|
delete element;
|
|
}
|
|
|
|
/* Generate a hash value for a pair of expressions. This can be used
|
|
iteratively by passing a previous result in HSTATE.
|
|
|
|
The same hash value is always returned for a given pair of expressions,
|
|
regardless of the order in which they are presented. This is useful in
|
|
hashing the operands of commutative functions. */
|
|
|
|
namespace inchash
|
|
{
|
|
|
|
static void
|
|
add_expr_commutative (const_tree t1, const_tree t2, hash &hstate)
|
|
{
|
|
hash one, two;
|
|
|
|
inchash::add_expr (t1, one);
|
|
inchash::add_expr (t2, two);
|
|
hstate.add_commutative (one, two);
|
|
}
|
|
|
|
/* Compute a hash value for a hashable_expr value EXPR and a
|
|
previously accumulated hash value VAL. If two hashable_expr
|
|
values compare equal with hashable_expr_equal_p, they must
|
|
hash to the same value, given an identical value of VAL.
|
|
The logic is intended to follow inchash::add_expr in tree.cc. */
|
|
|
|
static void
|
|
add_hashable_expr (const struct hashable_expr *expr, hash &hstate)
|
|
{
|
|
switch (expr->kind)
|
|
{
|
|
case EXPR_SINGLE:
|
|
inchash::add_expr (expr->ops.single.rhs, hstate);
|
|
break;
|
|
|
|
case EXPR_UNARY:
|
|
hstate.add_object (expr->ops.unary.op);
|
|
|
|
/* Make sure to include signedness in the hash computation.
|
|
Don't hash the type, that can lead to having nodes which
|
|
compare equal according to operand_equal_p, but which
|
|
have different hash codes. */
|
|
if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
|
|
|| expr->ops.unary.op == NON_LVALUE_EXPR)
|
|
hstate.add_int (TYPE_UNSIGNED (expr->type));
|
|
|
|
inchash::add_expr (expr->ops.unary.opnd, hstate);
|
|
break;
|
|
|
|
case EXPR_BINARY:
|
|
hstate.add_object (expr->ops.binary.op);
|
|
if (commutative_tree_code (expr->ops.binary.op))
|
|
inchash::add_expr_commutative (expr->ops.binary.opnd0,
|
|
expr->ops.binary.opnd1, hstate);
|
|
else
|
|
{
|
|
inchash::add_expr (expr->ops.binary.opnd0, hstate);
|
|
inchash::add_expr (expr->ops.binary.opnd1, hstate);
|
|
}
|
|
break;
|
|
|
|
case EXPR_TERNARY:
|
|
hstate.add_object (expr->ops.ternary.op);
|
|
if (commutative_ternary_tree_code (expr->ops.ternary.op))
|
|
inchash::add_expr_commutative (expr->ops.ternary.opnd0,
|
|
expr->ops.ternary.opnd1, hstate);
|
|
else
|
|
{
|
|
inchash::add_expr (expr->ops.ternary.opnd0, hstate);
|
|
inchash::add_expr (expr->ops.ternary.opnd1, hstate);
|
|
}
|
|
inchash::add_expr (expr->ops.ternary.opnd2, hstate);
|
|
break;
|
|
|
|
case EXPR_CALL:
|
|
{
|
|
size_t i;
|
|
enum tree_code code = CALL_EXPR;
|
|
gcall *fn_from;
|
|
|
|
hstate.add_object (code);
|
|
fn_from = expr->ops.call.fn_from;
|
|
if (gimple_call_internal_p (fn_from))
|
|
hstate.merge_hash ((hashval_t) gimple_call_internal_fn (fn_from));
|
|
else
|
|
inchash::add_expr (gimple_call_fn (fn_from), hstate);
|
|
for (i = 0; i < expr->ops.call.nargs; i++)
|
|
inchash::add_expr (expr->ops.call.args[i], hstate);
|
|
}
|
|
break;
|
|
|
|
case EXPR_PHI:
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < expr->ops.phi.nargs; i++)
|
|
inchash::add_expr (expr->ops.phi.args[i], hstate);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/* Hashing and equality functions. We compute a value number for expressions
|
|
using the code of the expression and the SSA numbers of its operands. */
|
|
|
|
static hashval_t
|
|
avail_expr_hash (class expr_hash_elt *p)
|
|
{
|
|
const struct hashable_expr *expr = p->expr ();
|
|
inchash::hash hstate;
|
|
|
|
if (expr->kind == EXPR_SINGLE)
|
|
{
|
|
/* T could potentially be a switch index or a goto dest. */
|
|
tree t = expr->ops.single.rhs;
|
|
if (TREE_CODE (t) == MEM_REF || handled_component_p (t))
|
|
{
|
|
/* Make equivalent statements of both these kinds hash together.
|
|
Dealing with both MEM_REF and ARRAY_REF allows us not to care
|
|
about equivalence with other statements not considered here. */
|
|
bool reverse;
|
|
poly_int64 offset, size, max_size;
|
|
tree base = get_ref_base_and_extent (t, &offset, &size, &max_size,
|
|
&reverse);
|
|
/* Strictly, we could try to normalize variable-sized accesses too,
|
|
but here we just deal with the common case. */
|
|
if (known_size_p (max_size)
|
|
&& known_eq (size, max_size))
|
|
{
|
|
enum tree_code code = MEM_REF;
|
|
hstate.add_object (code);
|
|
inchash::add_expr (base, hstate,
|
|
TREE_CODE (base) == MEM_REF
|
|
? OEP_ADDRESS_OF : 0);
|
|
hstate.add_object (offset);
|
|
hstate.add_object (size);
|
|
return hstate.end ();
|
|
}
|
|
}
|
|
}
|
|
|
|
inchash::add_hashable_expr (expr, hstate);
|
|
|
|
return hstate.end ();
|
|
}
|
|
|
|
/* Compares trees T0 and T1 to see if they are MEM_REF or ARRAY_REFs equivalent
|
|
to each other. (That is, they return the value of the same bit of memory.)
|
|
|
|
Return TRUE if the two are so equivalent; FALSE if not (which could still
|
|
mean the two are equivalent by other means). */
|
|
|
|
static bool
|
|
equal_mem_array_ref_p (tree t0, tree t1)
|
|
{
|
|
if (TREE_CODE (t0) != MEM_REF && ! handled_component_p (t0))
|
|
return false;
|
|
if (TREE_CODE (t1) != MEM_REF && ! handled_component_p (t1))
|
|
return false;
|
|
|
|
if (!types_compatible_p (TREE_TYPE (t0), TREE_TYPE (t1)))
|
|
return false;
|
|
bool rev0;
|
|
poly_int64 off0, sz0, max0;
|
|
tree base0 = get_ref_base_and_extent (t0, &off0, &sz0, &max0, &rev0);
|
|
if (!known_size_p (max0)
|
|
|| maybe_ne (sz0, max0))
|
|
return false;
|
|
|
|
bool rev1;
|
|
poly_int64 off1, sz1, max1;
|
|
tree base1 = get_ref_base_and_extent (t1, &off1, &sz1, &max1, &rev1);
|
|
if (!known_size_p (max1)
|
|
|| maybe_ne (sz1, max1))
|
|
return false;
|
|
|
|
if (rev0 != rev1 || maybe_ne (sz0, sz1) || maybe_ne (off0, off1))
|
|
return false;
|
|
|
|
return operand_equal_p (base0, base1,
|
|
(TREE_CODE (base0) == MEM_REF
|
|
|| TREE_CODE (base0) == TARGET_MEM_REF)
|
|
&& (TREE_CODE (base1) == MEM_REF
|
|
|| TREE_CODE (base1) == TARGET_MEM_REF)
|
|
? OEP_ADDRESS_OF : 0);
|
|
}
|
|
|
|
/* Compare two hashable_expr structures for equivalence. They are
|
|
considered equivalent when the expressions they denote must
|
|
necessarily be equal. The logic is intended to follow that of
|
|
operand_equal_p in fold-const.cc */
|
|
|
|
static bool
|
|
hashable_expr_equal_p (const struct hashable_expr *expr0,
|
|
const struct hashable_expr *expr1)
|
|
{
|
|
tree type0 = expr0->type;
|
|
tree type1 = expr1->type;
|
|
|
|
/* If either type is NULL, there is nothing to check. */
|
|
if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
|
|
return false;
|
|
|
|
/* If both types don't have the same signedness, precision, and mode,
|
|
then we can't consider them equal. */
|
|
if (type0 != type1
|
|
&& (TREE_CODE (type0) == ERROR_MARK
|
|
|| TREE_CODE (type1) == ERROR_MARK
|
|
|| TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
|
|
|| element_precision (type0) != element_precision (type1)
|
|
|| TYPE_MODE (type0) != TYPE_MODE (type1)))
|
|
return false;
|
|
|
|
if (expr0->kind != expr1->kind)
|
|
return false;
|
|
|
|
switch (expr0->kind)
|
|
{
|
|
case EXPR_SINGLE:
|
|
return equal_mem_array_ref_p (expr0->ops.single.rhs,
|
|
expr1->ops.single.rhs)
|
|
|| operand_equal_p (expr0->ops.single.rhs,
|
|
expr1->ops.single.rhs, 0);
|
|
case EXPR_UNARY:
|
|
if (expr0->ops.unary.op != expr1->ops.unary.op)
|
|
return false;
|
|
|
|
if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
|
|
|| expr0->ops.unary.op == NON_LVALUE_EXPR)
|
|
&& TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
|
|
return false;
|
|
|
|
return operand_equal_p (expr0->ops.unary.opnd,
|
|
expr1->ops.unary.opnd, 0);
|
|
|
|
case EXPR_BINARY:
|
|
if (expr0->ops.binary.op != expr1->ops.binary.op)
|
|
return false;
|
|
|
|
if (operand_equal_p (expr0->ops.binary.opnd0,
|
|
expr1->ops.binary.opnd0, 0)
|
|
&& operand_equal_p (expr0->ops.binary.opnd1,
|
|
expr1->ops.binary.opnd1, 0))
|
|
return true;
|
|
|
|
/* For commutative ops, allow the other order. */
|
|
return (commutative_tree_code (expr0->ops.binary.op)
|
|
&& operand_equal_p (expr0->ops.binary.opnd0,
|
|
expr1->ops.binary.opnd1, 0)
|
|
&& operand_equal_p (expr0->ops.binary.opnd1,
|
|
expr1->ops.binary.opnd0, 0));
|
|
|
|
case EXPR_TERNARY:
|
|
if (expr0->ops.ternary.op != expr1->ops.ternary.op
|
|
|| !operand_equal_p (expr0->ops.ternary.opnd2,
|
|
expr1->ops.ternary.opnd2, 0))
|
|
return false;
|
|
|
|
/* BIT_INSERT_EXPR has an implict operand as the type precision
|
|
of op1. Need to check to make sure they are the same. */
|
|
if (expr0->ops.ternary.op == BIT_INSERT_EXPR
|
|
&& TREE_CODE (expr0->ops.ternary.opnd1) == INTEGER_CST
|
|
&& TREE_CODE (expr1->ops.ternary.opnd1) == INTEGER_CST
|
|
&& TYPE_PRECISION (TREE_TYPE (expr0->ops.ternary.opnd1))
|
|
!= TYPE_PRECISION (TREE_TYPE (expr1->ops.ternary.opnd1)))
|
|
return false;
|
|
|
|
if (operand_equal_p (expr0->ops.ternary.opnd0,
|
|
expr1->ops.ternary.opnd0, 0)
|
|
&& operand_equal_p (expr0->ops.ternary.opnd1,
|
|
expr1->ops.ternary.opnd1, 0))
|
|
return true;
|
|
|
|
/* For commutative ops, allow the other order. */
|
|
return (commutative_ternary_tree_code (expr0->ops.ternary.op)
|
|
&& operand_equal_p (expr0->ops.ternary.opnd0,
|
|
expr1->ops.ternary.opnd1, 0)
|
|
&& operand_equal_p (expr0->ops.ternary.opnd1,
|
|
expr1->ops.ternary.opnd0, 0));
|
|
|
|
case EXPR_CALL:
|
|
{
|
|
size_t i;
|
|
|
|
/* If the calls are to different functions, then they
|
|
clearly cannot be equal. */
|
|
if (!gimple_call_same_target_p (expr0->ops.call.fn_from,
|
|
expr1->ops.call.fn_from))
|
|
return false;
|
|
|
|
if (! expr0->ops.call.pure)
|
|
return false;
|
|
|
|
if (expr0->ops.call.nargs != expr1->ops.call.nargs)
|
|
return false;
|
|
|
|
for (i = 0; i < expr0->ops.call.nargs; i++)
|
|
if (! operand_equal_p (expr0->ops.call.args[i],
|
|
expr1->ops.call.args[i], 0))
|
|
return false;
|
|
|
|
if (stmt_could_throw_p (cfun, expr0->ops.call.fn_from))
|
|
{
|
|
int lp0 = lookup_stmt_eh_lp (expr0->ops.call.fn_from);
|
|
int lp1 = lookup_stmt_eh_lp (expr1->ops.call.fn_from);
|
|
if ((lp0 > 0 || lp1 > 0) && lp0 != lp1)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
case EXPR_PHI:
|
|
{
|
|
size_t i;
|
|
|
|
if (expr0->ops.phi.nargs != expr1->ops.phi.nargs)
|
|
return false;
|
|
|
|
for (i = 0; i < expr0->ops.phi.nargs; i++)
|
|
if (! operand_equal_p (expr0->ops.phi.args[i],
|
|
expr1->ops.phi.args[i], 0))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Given a statement STMT, construct a hash table element. */
|
|
|
|
expr_hash_elt::expr_hash_elt (gimple *stmt, tree orig_lhs)
|
|
{
|
|
enum gimple_code code = gimple_code (stmt);
|
|
struct hashable_expr *expr = this->expr ();
|
|
|
|
if (code == GIMPLE_ASSIGN)
|
|
{
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
|
|
|
switch (get_gimple_rhs_class (subcode))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
expr->kind = EXPR_SINGLE;
|
|
expr->type = TREE_TYPE (gimple_assign_rhs1 (stmt));
|
|
expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
|
|
break;
|
|
case GIMPLE_UNARY_RHS:
|
|
expr->kind = EXPR_UNARY;
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
|
if (CONVERT_EXPR_CODE_P (subcode))
|
|
subcode = NOP_EXPR;
|
|
expr->ops.unary.op = subcode;
|
|
expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
|
|
break;
|
|
case GIMPLE_BINARY_RHS:
|
|
expr->kind = EXPR_BINARY;
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
|
expr->ops.binary.op = subcode;
|
|
expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
|
|
expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
|
|
break;
|
|
case GIMPLE_TERNARY_RHS:
|
|
expr->kind = EXPR_TERNARY;
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
|
expr->ops.ternary.op = subcode;
|
|
expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt);
|
|
expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt);
|
|
expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt);
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
else if (code == GIMPLE_COND)
|
|
{
|
|
expr->type = boolean_type_node;
|
|
expr->kind = EXPR_BINARY;
|
|
expr->ops.binary.op = gimple_cond_code (stmt);
|
|
expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
|
|
expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
|
|
}
|
|
else if (gcall *call_stmt = dyn_cast <gcall *> (stmt))
|
|
{
|
|
size_t nargs = gimple_call_num_args (call_stmt);
|
|
size_t i;
|
|
|
|
gcc_assert (gimple_call_lhs (call_stmt));
|
|
|
|
expr->type = TREE_TYPE (gimple_call_lhs (call_stmt));
|
|
expr->kind = EXPR_CALL;
|
|
expr->ops.call.fn_from = call_stmt;
|
|
|
|
if (gimple_call_flags (call_stmt) & (ECF_CONST | ECF_PURE))
|
|
expr->ops.call.pure = true;
|
|
else
|
|
expr->ops.call.pure = false;
|
|
|
|
expr->ops.call.nargs = nargs;
|
|
expr->ops.call.args = XCNEWVEC (tree, nargs);
|
|
for (i = 0; i < nargs; i++)
|
|
expr->ops.call.args[i] = gimple_call_arg (call_stmt, i);
|
|
}
|
|
else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
|
|
{
|
|
expr->type = TREE_TYPE (gimple_switch_index (swtch_stmt));
|
|
expr->kind = EXPR_SINGLE;
|
|
expr->ops.single.rhs = gimple_switch_index (swtch_stmt);
|
|
}
|
|
else if (code == GIMPLE_GOTO)
|
|
{
|
|
expr->type = TREE_TYPE (gimple_goto_dest (stmt));
|
|
expr->kind = EXPR_SINGLE;
|
|
expr->ops.single.rhs = gimple_goto_dest (stmt);
|
|
}
|
|
else if (code == GIMPLE_PHI)
|
|
{
|
|
size_t nargs = gimple_phi_num_args (stmt);
|
|
size_t i;
|
|
|
|
expr->type = TREE_TYPE (gimple_phi_result (stmt));
|
|
expr->kind = EXPR_PHI;
|
|
expr->ops.phi.nargs = nargs;
|
|
expr->ops.phi.args = XCNEWVEC (tree, nargs);
|
|
for (i = 0; i < nargs; i++)
|
|
expr->ops.phi.args[i] = gimple_phi_arg_def (stmt, i);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
m_lhs = orig_lhs;
|
|
m_vop = gimple_vuse (stmt);
|
|
m_hash = avail_expr_hash (this);
|
|
m_stamp = this;
|
|
}
|
|
|
|
/* Given a hashable_expr expression ORIG and an ORIG_LHS,
|
|
construct a hash table element. */
|
|
|
|
expr_hash_elt::expr_hash_elt (struct hashable_expr *orig, tree orig_lhs)
|
|
{
|
|
m_expr = *orig;
|
|
m_lhs = orig_lhs;
|
|
m_vop = NULL_TREE;
|
|
m_hash = avail_expr_hash (this);
|
|
m_stamp = this;
|
|
}
|
|
|
|
/* Copy constructor for a hash table element. */
|
|
|
|
expr_hash_elt::expr_hash_elt (class expr_hash_elt &old_elt)
|
|
{
|
|
m_expr = old_elt.m_expr;
|
|
m_lhs = old_elt.m_lhs;
|
|
m_vop = old_elt.m_vop;
|
|
m_hash = old_elt.m_hash;
|
|
m_stamp = this;
|
|
|
|
/* Now deep copy the malloc'd space for CALL and PHI args. */
|
|
if (old_elt.m_expr.kind == EXPR_CALL)
|
|
{
|
|
size_t nargs = old_elt.m_expr.ops.call.nargs;
|
|
size_t i;
|
|
|
|
m_expr.ops.call.args = XCNEWVEC (tree, nargs);
|
|
for (i = 0; i < nargs; i++)
|
|
m_expr.ops.call.args[i] = old_elt.m_expr.ops.call.args[i];
|
|
}
|
|
else if (old_elt.m_expr.kind == EXPR_PHI)
|
|
{
|
|
size_t nargs = old_elt.m_expr.ops.phi.nargs;
|
|
size_t i;
|
|
|
|
m_expr.ops.phi.args = XCNEWVEC (tree, nargs);
|
|
for (i = 0; i < nargs; i++)
|
|
m_expr.ops.phi.args[i] = old_elt.m_expr.ops.phi.args[i];
|
|
}
|
|
}
|
|
|
|
/* Calls and PHIs have a variable number of arguments that are allocated
|
|
on the heap. Thus we have to have a special dtor to release them. */
|
|
|
|
expr_hash_elt::~expr_hash_elt ()
|
|
{
|
|
if (m_expr.kind == EXPR_CALL)
|
|
free (m_expr.ops.call.args);
|
|
else if (m_expr.kind == EXPR_PHI)
|
|
free (m_expr.ops.phi.args);
|
|
}
|
|
|
|
/* Print a diagnostic dump of an expression hash table entry. */
|
|
|
|
void
|
|
expr_hash_elt::print (FILE *stream)
|
|
{
|
|
fprintf (stream, "STMT ");
|
|
|
|
if (m_lhs)
|
|
{
|
|
print_generic_expr (stream, m_lhs);
|
|
fprintf (stream, " = ");
|
|
}
|
|
|
|
switch (m_expr.kind)
|
|
{
|
|
case EXPR_SINGLE:
|
|
print_generic_expr (stream, m_expr.ops.single.rhs);
|
|
break;
|
|
|
|
case EXPR_UNARY:
|
|
fprintf (stream, "%s ", get_tree_code_name (m_expr.ops.unary.op));
|
|
print_generic_expr (stream, m_expr.ops.unary.opnd);
|
|
break;
|
|
|
|
case EXPR_BINARY:
|
|
print_generic_expr (stream, m_expr.ops.binary.opnd0);
|
|
fprintf (stream, " %s ", get_tree_code_name (m_expr.ops.binary.op));
|
|
print_generic_expr (stream, m_expr.ops.binary.opnd1);
|
|
break;
|
|
|
|
case EXPR_TERNARY:
|
|
fprintf (stream, " %s <", get_tree_code_name (m_expr.ops.ternary.op));
|
|
print_generic_expr (stream, m_expr.ops.ternary.opnd0);
|
|
fputs (", ", stream);
|
|
print_generic_expr (stream, m_expr.ops.ternary.opnd1);
|
|
fputs (", ", stream);
|
|
print_generic_expr (stream, m_expr.ops.ternary.opnd2);
|
|
fputs (">", stream);
|
|
break;
|
|
|
|
case EXPR_CALL:
|
|
{
|
|
size_t i;
|
|
size_t nargs = m_expr.ops.call.nargs;
|
|
gcall *fn_from;
|
|
|
|
fn_from = m_expr.ops.call.fn_from;
|
|
if (gimple_call_internal_p (fn_from))
|
|
fprintf (stream, ".%s",
|
|
internal_fn_name (gimple_call_internal_fn (fn_from)));
|
|
else
|
|
print_generic_expr (stream, gimple_call_fn (fn_from));
|
|
fprintf (stream, " (");
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
print_generic_expr (stream, m_expr.ops.call.args[i]);
|
|
if (i + 1 < nargs)
|
|
fprintf (stream, ", ");
|
|
}
|
|
fprintf (stream, ")");
|
|
}
|
|
break;
|
|
|
|
case EXPR_PHI:
|
|
{
|
|
size_t i;
|
|
size_t nargs = m_expr.ops.phi.nargs;
|
|
|
|
fprintf (stream, "PHI <");
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
print_generic_expr (stream, m_expr.ops.phi.args[i]);
|
|
if (i + 1 < nargs)
|
|
fprintf (stream, ", ");
|
|
}
|
|
fprintf (stream, ">");
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (m_vop)
|
|
{
|
|
fprintf (stream, " with ");
|
|
print_generic_expr (stream, m_vop);
|
|
}
|
|
|
|
fprintf (stream, "\n");
|
|
}
|
|
|
|
/* Pop entries off the stack until we hit the NULL marker.
|
|
For each entry popped, use the SRC/DEST pair to restore
|
|
SRC to its prior value. */
|
|
|
|
void
|
|
const_and_copies::pop_to_marker (void)
|
|
{
|
|
while (m_stack.length () > 0)
|
|
{
|
|
tree prev_value, dest;
|
|
|
|
dest = m_stack.pop ();
|
|
|
|
/* A NULL value indicates we should stop unwinding, otherwise
|
|
pop off the next entry as they're recorded in pairs. */
|
|
if (dest == NULL)
|
|
break;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "<<<< COPY ");
|
|
print_generic_expr (dump_file, dest);
|
|
fprintf (dump_file, " = ");
|
|
print_generic_expr (dump_file, SSA_NAME_VALUE (dest));
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
prev_value = m_stack.pop ();
|
|
set_ssa_name_value (dest, prev_value);
|
|
}
|
|
}
|
|
|
|
/* Record that X has the value Y and that X's previous value is PREV_X.
|
|
|
|
This variant does not follow the value chain for Y. */
|
|
|
|
void
|
|
const_and_copies::record_const_or_copy_raw (tree x, tree y, tree prev_x)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "0>>> COPY ");
|
|
print_generic_expr (dump_file, x);
|
|
fprintf (dump_file, " = ");
|
|
print_generic_expr (dump_file, y);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
set_ssa_name_value (x, y);
|
|
m_stack.reserve (2);
|
|
m_stack.quick_push (prev_x);
|
|
m_stack.quick_push (x);
|
|
}
|
|
|
|
/* Record that X has the value Y. */
|
|
|
|
void
|
|
const_and_copies::record_const_or_copy (tree x, tree y)
|
|
{
|
|
record_const_or_copy (x, y, SSA_NAME_VALUE (x));
|
|
}
|
|
|
|
/* Record that X has the value Y and that X's previous value is PREV_X.
|
|
|
|
This variant follow's Y value chain. */
|
|
|
|
void
|
|
const_and_copies::record_const_or_copy (tree x, tree y, tree prev_x)
|
|
{
|
|
/* Y may be NULL if we are invalidating entries in the table. */
|
|
if (y && TREE_CODE (y) == SSA_NAME)
|
|
{
|
|
tree tmp = SSA_NAME_VALUE (y);
|
|
y = tmp ? tmp : y;
|
|
}
|
|
|
|
record_const_or_copy_raw (x, y, prev_x);
|
|
}
|
|
|
|
bool
|
|
expr_elt_hasher::equal (const value_type &p1, const compare_type &p2)
|
|
{
|
|
const struct hashable_expr *expr1 = p1->expr ();
|
|
const class expr_hash_elt *stamp1 = p1->stamp ();
|
|
const struct hashable_expr *expr2 = p2->expr ();
|
|
const class expr_hash_elt *stamp2 = p2->stamp ();
|
|
|
|
/* This case should apply only when removing entries from the table. */
|
|
if (stamp1 == stamp2)
|
|
return true;
|
|
|
|
if (p1->hash () != p2->hash ())
|
|
return false;
|
|
|
|
/* In case of a collision, both RHS have to be identical and have the
|
|
same VUSE operands. */
|
|
if (hashable_expr_equal_p (expr1, expr2)
|
|
&& types_compatible_p (expr1->type, expr2->type))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Given a conditional expression COND as a tree, initialize
|
|
a hashable_expr expression EXPR. The conditional must be a
|
|
comparison or logical negation. A constant or a variable is
|
|
not permitted. */
|
|
|
|
void
|
|
initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
|
|
{
|
|
expr->type = boolean_type_node;
|
|
|
|
if (COMPARISON_CLASS_P (cond))
|
|
{
|
|
expr->kind = EXPR_BINARY;
|
|
expr->ops.binary.op = TREE_CODE (cond);
|
|
expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
|
|
expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
|
|
}
|
|
else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
|
{
|
|
expr->kind = EXPR_UNARY;
|
|
expr->ops.unary.op = TRUTH_NOT_EXPR;
|
|
expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Build a cond_equivalence record indicating that the comparison
|
|
CODE holds between operands OP0 and OP1 and push it to **P. */
|
|
|
|
static void
|
|
build_and_record_new_cond (enum tree_code code,
|
|
tree op0, tree op1,
|
|
vec<cond_equivalence> *p,
|
|
bool val = true)
|
|
{
|
|
cond_equivalence c;
|
|
struct hashable_expr *cond = &c.cond;
|
|
|
|
gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
|
|
|
|
cond->type = boolean_type_node;
|
|
cond->kind = EXPR_BINARY;
|
|
cond->ops.binary.op = code;
|
|
cond->ops.binary.opnd0 = op0;
|
|
cond->ops.binary.opnd1 = op1;
|
|
|
|
c.value = val ? boolean_true_node : boolean_false_node;
|
|
p->safe_push (c);
|
|
}
|
|
|
|
/* Record that COND is true and INVERTED is false into the edge information
|
|
structure. Also record that any conditions dominated by COND are true
|
|
as well.
|
|
|
|
For example, if a < b is true, then a <= b must also be true. */
|
|
|
|
void
|
|
record_conditions (vec<cond_equivalence> *p, tree cond, tree inverted)
|
|
{
|
|
tree op0, op1;
|
|
cond_equivalence c;
|
|
|
|
if (!COMPARISON_CLASS_P (cond))
|
|
return;
|
|
|
|
op0 = TREE_OPERAND (cond, 0);
|
|
op1 = TREE_OPERAND (cond, 1);
|
|
|
|
switch (TREE_CODE (cond))
|
|
{
|
|
case LT_EXPR:
|
|
case GT_EXPR:
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
|
{
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1, p);
|
|
build_and_record_new_cond (LTGT_EXPR, op0, op1, p);
|
|
}
|
|
|
|
build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
|
|
? LE_EXPR : GE_EXPR),
|
|
op0, op1, p);
|
|
build_and_record_new_cond (NE_EXPR, op0, op1, p);
|
|
build_and_record_new_cond (EQ_EXPR, op0, op1, p, false);
|
|
break;
|
|
|
|
case GE_EXPR:
|
|
case LE_EXPR:
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
|
{
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1, p);
|
|
}
|
|
break;
|
|
|
|
case EQ_EXPR:
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
|
{
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1, p);
|
|
}
|
|
build_and_record_new_cond (LE_EXPR, op0, op1, p);
|
|
build_and_record_new_cond (GE_EXPR, op0, op1, p);
|
|
break;
|
|
|
|
case UNORDERED_EXPR:
|
|
build_and_record_new_cond (NE_EXPR, op0, op1, p);
|
|
build_and_record_new_cond (UNLE_EXPR, op0, op1, p);
|
|
build_and_record_new_cond (UNGE_EXPR, op0, op1, p);
|
|
build_and_record_new_cond (UNEQ_EXPR, op0, op1, p);
|
|
build_and_record_new_cond (UNLT_EXPR, op0, op1, p);
|
|
build_and_record_new_cond (UNGT_EXPR, op0, op1, p);
|
|
break;
|
|
|
|
case UNLT_EXPR:
|
|
case UNGT_EXPR:
|
|
build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
|
|
? UNLE_EXPR : UNGE_EXPR),
|
|
op0, op1, p);
|
|
build_and_record_new_cond (NE_EXPR, op0, op1, p);
|
|
break;
|
|
|
|
case UNEQ_EXPR:
|
|
build_and_record_new_cond (UNLE_EXPR, op0, op1, p);
|
|
build_and_record_new_cond (UNGE_EXPR, op0, op1, p);
|
|
break;
|
|
|
|
case LTGT_EXPR:
|
|
build_and_record_new_cond (NE_EXPR, op0, op1, p);
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1, p);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Now store the original true and false conditions into the first
|
|
two slots. */
|
|
initialize_expr_from_cond (cond, &c.cond);
|
|
c.value = boolean_true_node;
|
|
p->safe_push (c);
|
|
|
|
/* It is possible for INVERTED to be the negation of a comparison,
|
|
and not a valid RHS or GIMPLE_COND condition. This happens because
|
|
invert_truthvalue may return such an expression when asked to invert
|
|
a floating-point comparison. These comparisons are not assumed to
|
|
obey the trichotomy law. */
|
|
initialize_expr_from_cond (inverted, &c.cond);
|
|
c.value = boolean_false_node;
|
|
p->safe_push (c);
|
|
}
|