mirror of
https://forge.sourceware.org/marek/gcc.git
synced 2026-02-21 19:35:36 -05:00
1434 lines
35 KiB
C++
1434 lines
35 KiB
C++
/* Code for range operators.
|
|
Copyright (C) 2017-2026 Free Software Foundation, Inc.
|
|
Contributed by Andrew MacLeod <amacleod@redhat.com>
|
|
and Aldy Hernandez <aldyh@redhat.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "insn-codes.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "optabs-tree.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "diagnostic-core.h"
|
|
#include "flags.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "calls.h"
|
|
#include "cfganal.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimple-fold.h"
|
|
#include "tree-eh.h"
|
|
#include "gimple-walk.h"
|
|
#include "tree-cfg.h"
|
|
#include "wide-int.h"
|
|
#include "value-relation.h"
|
|
#include "range-op.h"
|
|
#include "tree-ssa-ccp.h"
|
|
#include "range-op-mixed.h"
|
|
|
|
bool
|
|
range_operator::fold_range (prange &, tree, const prange &, const prange &,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::fold_range (prange &, tree, const prange &, const irange &,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::fold_range (irange &, tree, const prange &, const prange &,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::fold_range (prange &, tree, const irange &, const prange &,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::fold_range (irange &, tree, const prange &, const irange &,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op1_op2_relation_effect (prange &, tree,
|
|
const prange &,
|
|
const prange &,
|
|
relation_kind) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op1_op2_relation_effect (prange &, tree,
|
|
const prange &,
|
|
const irange &,
|
|
relation_kind) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op1_op2_relation_effect (irange &, tree,
|
|
const prange &,
|
|
const prange &,
|
|
relation_kind) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op1_op2_relation_effect (prange &, tree,
|
|
const irange &,
|
|
const prange &,
|
|
relation_kind) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op1_op2_relation_effect (irange &, tree,
|
|
const prange &,
|
|
const irange &,
|
|
relation_kind) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op1_range (prange &, tree,
|
|
const prange &lhs ATTRIBUTE_UNUSED,
|
|
const prange &op2 ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op1_range (prange &, tree,
|
|
const irange &lhs ATTRIBUTE_UNUSED,
|
|
const prange &op2 ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op1_range (prange &, tree,
|
|
const prange &lhs ATTRIBUTE_UNUSED,
|
|
const irange &op2 ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op1_range (irange &, tree,
|
|
const prange &lhs ATTRIBUTE_UNUSED,
|
|
const irange &op2 ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op2_range (prange &, tree,
|
|
const irange &lhs ATTRIBUTE_UNUSED,
|
|
const prange &op1 ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
range_operator::op2_range (irange &, tree,
|
|
const prange &lhs ATTRIBUTE_UNUSED,
|
|
const prange &op1 ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
relation_kind
|
|
range_operator::op1_op2_relation (const irange &lhs ATTRIBUTE_UNUSED,
|
|
const prange &op1 ATTRIBUTE_UNUSED,
|
|
const prange &op2 ATTRIBUTE_UNUSED) const
|
|
{
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
relation_kind
|
|
range_operator::lhs_op1_relation (const prange &lhs ATTRIBUTE_UNUSED,
|
|
const irange &op1 ATTRIBUTE_UNUSED,
|
|
const irange &op2 ATTRIBUTE_UNUSED,
|
|
relation_kind rel ATTRIBUTE_UNUSED) const
|
|
{
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
relation_kind
|
|
range_operator::lhs_op1_relation (const irange &lhs ATTRIBUTE_UNUSED,
|
|
const prange &op1 ATTRIBUTE_UNUSED,
|
|
const prange &op2 ATTRIBUTE_UNUSED,
|
|
relation_kind rel ATTRIBUTE_UNUSED) const
|
|
{
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
relation_kind
|
|
range_operator::lhs_op1_relation (const prange &lhs ATTRIBUTE_UNUSED,
|
|
const prange &op1 ATTRIBUTE_UNUSED,
|
|
const prange &op2 ATTRIBUTE_UNUSED,
|
|
relation_kind rel ATTRIBUTE_UNUSED) const
|
|
{
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
relation_kind
|
|
range_operator::lhs_op1_relation (const prange &lhs ATTRIBUTE_UNUSED,
|
|
const prange &op1 ATTRIBUTE_UNUSED,
|
|
const irange &op2 ATTRIBUTE_UNUSED,
|
|
relation_kind rel ATTRIBUTE_UNUSED) const
|
|
{
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
void
|
|
range_operator::update_bitmask (irange &,
|
|
const prange &,
|
|
const prange &) const
|
|
{
|
|
}
|
|
|
|
// Return the upper limit for a type.
|
|
|
|
static inline wide_int
|
|
max_limit (const_tree type)
|
|
{
|
|
return wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
|
|
}
|
|
|
|
// Return the lower limit for a type.
|
|
|
|
static inline wide_int
|
|
min_limit (const_tree type)
|
|
{
|
|
return wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type));
|
|
}
|
|
|
|
// Build a range that is < VAL and store it in R.
|
|
|
|
static void
|
|
build_lt (prange &r, tree type, const prange &val)
|
|
{
|
|
wi::overflow_type ov;
|
|
wide_int lim = wi::sub (val.upper_bound (), 1, UNSIGNED, &ov);
|
|
|
|
// If val - 1 underflows, check if X < MIN, which is an empty range.
|
|
if (ov)
|
|
r.set_undefined ();
|
|
else
|
|
r.set (type, min_limit (type), lim);
|
|
}
|
|
|
|
// Build a range that is <= VAL and store it in R.
|
|
|
|
static void
|
|
build_le (prange &r, tree type, const prange &val)
|
|
{
|
|
r.set (type, min_limit (type), val.upper_bound ());
|
|
}
|
|
|
|
// Build a range that is > VAL and store it in R.
|
|
|
|
static void
|
|
build_gt (prange &r, tree type, const prange &val)
|
|
{
|
|
wi::overflow_type ov;
|
|
wide_int lim = wi::add (val.lower_bound (), 1, UNSIGNED, &ov);
|
|
|
|
// If val + 1 overflows, check is for X > MAX, which is an empty range.
|
|
if (ov)
|
|
r.set_undefined ();
|
|
else
|
|
r.set (type, lim, max_limit (type));
|
|
|
|
}
|
|
|
|
// Build a range that is >= VAL and store it in R.
|
|
|
|
static void
|
|
build_ge (prange &r, tree type, const prange &val)
|
|
{
|
|
r.set (type, val.lower_bound (), max_limit (type));
|
|
}
|
|
|
|
class pointer_plus_operator : public range_operator
|
|
{
|
|
using range_operator::update_bitmask;
|
|
using range_operator::fold_range;
|
|
using range_operator::op2_range;
|
|
using range_operator::lhs_op1_relation;
|
|
public:
|
|
virtual bool fold_range (prange &r, tree type,
|
|
const prange &op1,
|
|
const irange &op2,
|
|
relation_trio) const final override;
|
|
virtual bool op2_range (irange &r, tree type,
|
|
const prange &lhs,
|
|
const prange &op1,
|
|
relation_trio = TRIO_VARYING) const final override;
|
|
virtual relation_kind lhs_op1_relation (const prange &lhs,
|
|
const prange &op1,
|
|
const irange &op2,
|
|
relation_kind) const final override;
|
|
void update_bitmask (prange &r, const prange &lh, const irange &rh) const
|
|
{ update_known_bitmask (r, POINTER_PLUS_EXPR, lh, rh); }
|
|
} op_pointer_plus;
|
|
|
|
bool
|
|
pointer_plus_operator::fold_range (prange &r, tree type,
|
|
const prange &op1,
|
|
const irange &op2,
|
|
relation_trio) const
|
|
{
|
|
if (empty_range_varying (r, type, op1, op2))
|
|
return true;
|
|
|
|
const wide_int lh_lb = op1.lower_bound ();
|
|
const wide_int lh_ub = op1.upper_bound ();
|
|
const wide_int rh_lb = op2.lower_bound ();
|
|
const wide_int rh_ub = op2.upper_bound ();
|
|
|
|
// Check for [0,0] + const, and simply return the const.
|
|
if (lh_lb == 0 && lh_ub == 0 && rh_lb == rh_ub)
|
|
{
|
|
r.set (type, rh_lb, rh_lb);
|
|
return true;
|
|
}
|
|
|
|
// For pointer types, we are really only interested in asserting
|
|
// whether the expression evaluates to non-NULL.
|
|
//
|
|
// With -fno-delete-null-pointer-checks we need to be more
|
|
// conservative. As some object might reside at address 0,
|
|
// then some offset could be added to it and the same offset
|
|
// subtracted again and the result would be NULL.
|
|
// E.g.
|
|
// static int a[12]; where &a[0] is NULL and
|
|
// ptr = &a[6];
|
|
// ptr -= 6;
|
|
// ptr will be NULL here, even when there is POINTER_PLUS_EXPR
|
|
// where the first range doesn't include zero and the second one
|
|
// doesn't either. As the second operand is sizetype (unsigned),
|
|
// consider all ranges where the MSB could be set as possible
|
|
// subtractions where the result might be NULL.
|
|
if ((!wi_includes_zero_p (type, lh_lb, lh_ub)
|
|
|| !wi_includes_zero_p (type, rh_lb, rh_ub))
|
|
&& !TYPE_OVERFLOW_WRAPS (type)
|
|
&& (flag_delete_null_pointer_checks
|
|
|| !wi::sign_mask (rh_ub)))
|
|
r.set_nonzero (type);
|
|
else if (lh_lb == lh_ub && lh_lb == 0
|
|
&& rh_lb == rh_ub && rh_lb == 0)
|
|
r.set_zero (type);
|
|
else
|
|
r.set_varying (type);
|
|
|
|
update_known_bitmask (r, POINTER_PLUS_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
pointer_plus_operator::op2_range (irange &r, tree type,
|
|
const prange &lhs ATTRIBUTE_UNUSED,
|
|
const prange &op1 ATTRIBUTE_UNUSED,
|
|
relation_trio trio) const
|
|
{
|
|
relation_kind rel = trio.lhs_op1 ();
|
|
r.set_varying (type);
|
|
|
|
// If the LHS and OP1 are equal, the op2 must be zero.
|
|
if (rel == VREL_EQ)
|
|
r.set_zero (type);
|
|
// If the LHS and OP1 are not equal, the offset must be non-zero.
|
|
else if (rel == VREL_NE)
|
|
r.set_nonzero (type);
|
|
else
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Return the relation between the LHS and OP1 based on the value of the
|
|
// operand being added. Pointer_plus is define to have a size_type for
|
|
// operand 2 which can be interpreted as negative, so always used SIGNED.
|
|
// Any overflow is considered UB and thus ignored.
|
|
|
|
relation_kind
|
|
pointer_plus_operator::lhs_op1_relation (const prange &lhs,
|
|
const prange &op1,
|
|
const irange &op2,
|
|
relation_kind) const
|
|
{
|
|
if (lhs.undefined_p () || op1.undefined_p () || op2.undefined_p ())
|
|
return VREL_VARYING;
|
|
|
|
unsigned prec = TYPE_PRECISION (op2.type ());
|
|
|
|
// LHS = OP1 + 0 indicates LHS == OP1.
|
|
if (op2.zero_p ())
|
|
return VREL_EQ;
|
|
|
|
tree val;
|
|
// Only deal with singletons for now.
|
|
if (TYPE_OVERFLOW_UNDEFINED (lhs.type ()) && op2.singleton_p (&val))
|
|
{
|
|
// Always interpret VALUE as a signed value. Positive will increase
|
|
// the pointer value, and negative will decrease the poiinter value.
|
|
// It cannot be zero or the earlier zero_p () condition will catch it.
|
|
wide_int value = wi::to_wide (val);
|
|
|
|
// Positive op2 means lhs > op1.
|
|
if (wi::gt_p (value, wi::zero (prec), SIGNED))
|
|
return VREL_GT;
|
|
|
|
// Negative op2 means lhs < op1.
|
|
if (wi::lt_p (value, wi::zero (prec), SIGNED))
|
|
return VREL_LT;
|
|
}
|
|
|
|
// If op2 does not contain 0, then LHS and OP1 can never be equal.
|
|
if (!range_includes_zero_p (op2))
|
|
return VREL_NE;
|
|
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
bool
|
|
operator_bitwise_or::fold_range (prange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2,
|
|
relation_trio) const
|
|
{
|
|
// For pointer types, we are really only interested in asserting
|
|
// whether the expression evaluates to non-NULL.
|
|
if (!range_includes_zero_p (op1) || !range_includes_zero_p (op2))
|
|
r.set_nonzero (type);
|
|
else if (op1.zero_p () && op2.zero_p ())
|
|
r.set_zero (type);
|
|
else
|
|
r.set_varying (type);
|
|
|
|
update_known_bitmask (r, BIT_IOR_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
|
|
class operator_pointer_diff : public range_operator
|
|
{
|
|
using range_operator::fold_range;
|
|
using range_operator::update_bitmask;
|
|
using range_operator::op1_op2_relation_effect;
|
|
virtual bool fold_range (irange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2,
|
|
relation_trio trio) const final override;
|
|
virtual bool op1_op2_relation_effect (irange &lhs_range,
|
|
tree type,
|
|
const prange &op1_range,
|
|
const prange &op2_range,
|
|
relation_kind rel) const final override;
|
|
void update_bitmask (irange &r,
|
|
const prange &lh, const prange &rh) const final override
|
|
{ update_known_bitmask (r, POINTER_DIFF_EXPR, lh, rh); }
|
|
} op_pointer_diff;
|
|
|
|
bool
|
|
operator_pointer_diff::fold_range (irange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2,
|
|
relation_trio trio) const
|
|
{
|
|
gcc_checking_assert (r.supports_type_p (type));
|
|
|
|
r.set_varying (type);
|
|
relation_kind rel = trio.op1_op2 ();
|
|
op1_op2_relation_effect (r, type, op1, op2, rel);
|
|
update_bitmask (r, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_pointer_diff::op1_op2_relation_effect (irange &lhs_range, tree type,
|
|
const prange &op1_range,
|
|
const prange &op2_range,
|
|
relation_kind rel) const
|
|
{
|
|
int_range<2> op1, op2, tmp;
|
|
range_op_handler cast (CONVERT_EXPR);
|
|
|
|
if (!cast.fold_range (op1, type, op1_range, tmp)
|
|
|| !cast.fold_range (op2, type, op2_range, tmp))
|
|
return false;
|
|
|
|
return minus_op1_op2_relation_effect (lhs_range, type, op1, op2, rel);
|
|
}
|
|
|
|
bool
|
|
operator_identity::fold_range (prange &r, tree type ATTRIBUTE_UNUSED,
|
|
const prange &lh ATTRIBUTE_UNUSED,
|
|
const prange &rh ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
r = lh;
|
|
return true;
|
|
}
|
|
|
|
relation_kind
|
|
operator_identity::lhs_op1_relation (const prange &lhs,
|
|
const prange &op1 ATTRIBUTE_UNUSED,
|
|
const prange &op2 ATTRIBUTE_UNUSED,
|
|
relation_kind) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return VREL_VARYING;
|
|
// Simply a copy, so they are equivalent.
|
|
return VREL_EQ;
|
|
}
|
|
|
|
bool
|
|
operator_identity::op1_range (prange &r, tree type ATTRIBUTE_UNUSED,
|
|
const prange &lhs,
|
|
const prange &op2 ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
r = lhs;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_cst::fold_range (prange &r, tree type ATTRIBUTE_UNUSED,
|
|
const prange &lh,
|
|
const prange & ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
r = lh;
|
|
return true;
|
|
}
|
|
|
|
// Cast between pointers.
|
|
|
|
bool
|
|
operator_cast::fold_range (prange &r, tree type,
|
|
const prange &inner,
|
|
const prange &outer,
|
|
relation_trio) const
|
|
{
|
|
if (empty_range_varying (r, type, inner, outer))
|
|
return true;
|
|
|
|
r.set (type, inner.lower_bound (), inner.upper_bound ());
|
|
r.update_bitmask (inner.get_bitmask ());
|
|
return true;
|
|
}
|
|
|
|
// Cast a pointer to an integer.
|
|
|
|
bool
|
|
operator_cast::fold_range (irange &r, tree type,
|
|
const prange &inner,
|
|
const irange &outer,
|
|
relation_trio) const
|
|
{
|
|
if (empty_range_varying (r, type, inner, outer))
|
|
return true;
|
|
|
|
// Represent INNER as an integer of the same size, and then cast it
|
|
// to the resulting integer type.
|
|
tree pointer_uint_type = make_unsigned_type (TYPE_PRECISION (inner.type ()));
|
|
r.set (pointer_uint_type, inner.lower_bound (), inner.upper_bound ());
|
|
r.update_bitmask (inner.get_bitmask ());
|
|
range_cast (r, type);
|
|
return true;
|
|
}
|
|
|
|
// Cast an integer to a pointer.
|
|
|
|
bool
|
|
operator_cast::fold_range (prange &r, tree type,
|
|
const irange &inner,
|
|
const prange &outer,
|
|
relation_trio) const
|
|
{
|
|
if (empty_range_varying (r, type, inner, outer))
|
|
return true;
|
|
|
|
// Cast INNER to an integer of the same size as the pointer we want,
|
|
// and then copy the bounds to the resulting pointer range.
|
|
int_range<2> tmp = inner;
|
|
tree pointer_uint_type = make_unsigned_type (TYPE_PRECISION (type));
|
|
range_cast (tmp, pointer_uint_type);
|
|
// Casts may cause ranges to become UNDEFINED based on bitmasks.
|
|
if (tmp.undefined_p ())
|
|
r.set_varying (type);
|
|
else
|
|
{
|
|
r.set (type, tmp.lower_bound (), tmp.upper_bound ());
|
|
r.update_bitmask (tmp.get_bitmask ());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_cast::op1_range (prange &r, tree type,
|
|
const prange &lhs,
|
|
const prange &op2,
|
|
relation_trio trio) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return false;
|
|
gcc_checking_assert (types_compatible_p (op2.type(), type));
|
|
|
|
// Conversion from other pointers or a constant (including 0/NULL)
|
|
// are straightforward.
|
|
if (POINTER_TYPE_P (lhs.type ())
|
|
|| (lhs.singleton_p ()
|
|
&& TYPE_PRECISION (lhs.type ()) >= TYPE_PRECISION (type)))
|
|
fold_range (r, type, lhs, op2, trio);
|
|
else
|
|
{
|
|
// If the LHS is not a pointer nor a singleton, then it is
|
|
// either VARYING or non-zero.
|
|
if (!lhs.undefined_p () && !range_includes_zero_p (lhs))
|
|
r.set_nonzero (type);
|
|
else
|
|
r.set_varying (type);
|
|
}
|
|
r.intersect (op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_cast::op1_range (irange &r, tree type,
|
|
const prange &lhs,
|
|
const irange &op2,
|
|
relation_trio trio) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return false;
|
|
gcc_checking_assert (types_compatible_p (op2.type(), type));
|
|
|
|
// Conversion from other pointers or a constant (including 0/NULL)
|
|
// are straightforward.
|
|
if (POINTER_TYPE_P (lhs.type ())
|
|
|| (lhs.singleton_p ()
|
|
&& TYPE_PRECISION (lhs.type ()) >= TYPE_PRECISION (type)))
|
|
fold_range (r, type, lhs, op2, trio);
|
|
else
|
|
{
|
|
// If the LHS is not a pointer nor a singleton, then it is
|
|
// either VARYING or non-zero.
|
|
if (!lhs.undefined_p () && !range_includes_zero_p (lhs))
|
|
r.set_nonzero (type);
|
|
else
|
|
r.set_varying (type);
|
|
}
|
|
r.intersect (op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_cast::op1_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op2,
|
|
relation_trio trio) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return false;
|
|
gcc_checking_assert (types_compatible_p (op2.type(), type));
|
|
|
|
// Conversion from other pointers or a constant (including 0/NULL)
|
|
// are straightforward.
|
|
if (POINTER_TYPE_P (lhs.type ())
|
|
|| (lhs.singleton_p ()
|
|
&& TYPE_PRECISION (lhs.type ()) >= TYPE_PRECISION (type)))
|
|
fold_range (r, type, lhs, op2, trio);
|
|
else
|
|
{
|
|
// If the LHS is not a pointer nor a singleton, then it is
|
|
// either VARYING or non-zero.
|
|
if (!lhs.undefined_p () && !range_includes_zero_p (lhs))
|
|
r.set_nonzero (type);
|
|
else
|
|
r.set_varying (type);
|
|
}
|
|
r.intersect (op2);
|
|
return true;
|
|
}
|
|
|
|
relation_kind
|
|
operator_cast::lhs_op1_relation (const prange &lhs,
|
|
const prange &op1,
|
|
const prange &op2 ATTRIBUTE_UNUSED,
|
|
relation_kind) const
|
|
{
|
|
if (lhs.undefined_p () || op1.undefined_p ())
|
|
return VREL_VARYING;
|
|
unsigned lhs_prec = TYPE_PRECISION (lhs.type ());
|
|
unsigned op1_prec = TYPE_PRECISION (op1.type ());
|
|
// If the result gets sign extended into a larger type check first if this
|
|
// qualifies as a partial equivalence.
|
|
if (TYPE_SIGN (op1.type ()) == SIGNED && lhs_prec > op1_prec)
|
|
{
|
|
// If the result is sign extended, and the LHS is larger than op1,
|
|
// check if op1's range can be negative as the sign extension will
|
|
// cause the upper bits to be 1 instead of 0, invalidating the PE.
|
|
int_range<3> negs = range_negatives (op1.type ());
|
|
negs.intersect (op1);
|
|
if (!negs.undefined_p ())
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
unsigned prec = MIN (lhs_prec, op1_prec);
|
|
return bits_to_pe (prec);
|
|
}
|
|
|
|
relation_kind
|
|
operator_cast::lhs_op1_relation (const prange &lhs,
|
|
const irange &op1,
|
|
const irange &op2 ATTRIBUTE_UNUSED,
|
|
relation_kind) const
|
|
{
|
|
if (lhs.undefined_p () || op1.undefined_p ())
|
|
return VREL_VARYING;
|
|
unsigned lhs_prec = TYPE_PRECISION (lhs.type ());
|
|
unsigned op1_prec = TYPE_PRECISION (op1.type ());
|
|
// If the result gets sign extended into a larger type check first if this
|
|
// qualifies as a partial equivalence.
|
|
if (TYPE_SIGN (op1.type ()) == SIGNED && lhs_prec > op1_prec)
|
|
{
|
|
// If the result is sign extended, and the LHS is larger than op1,
|
|
// check if op1's range can be negative as the sign extension will
|
|
// cause the upper bits to be 1 instead of 0, invalidating the PE.
|
|
int_range<3> negs = range_negatives (op1.type ());
|
|
negs.intersect (op1);
|
|
if (!negs.undefined_p ())
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
unsigned prec = MIN (lhs_prec, op1_prec);
|
|
return bits_to_pe (prec);
|
|
}
|
|
|
|
relation_kind
|
|
operator_cast::lhs_op1_relation (const irange &lhs,
|
|
const prange &op1,
|
|
const prange &op2 ATTRIBUTE_UNUSED,
|
|
relation_kind) const
|
|
{
|
|
if (lhs.undefined_p () || op1.undefined_p ())
|
|
return VREL_VARYING;
|
|
unsigned lhs_prec = TYPE_PRECISION (lhs.type ());
|
|
unsigned op1_prec = TYPE_PRECISION (op1.type ());
|
|
// If the result gets sign extended into a larger type check first if this
|
|
// qualifies as a partial equivalence.
|
|
if (TYPE_SIGN (op1.type ()) == SIGNED && lhs_prec > op1_prec)
|
|
{
|
|
// If the result is sign extended, and the LHS is larger than op1,
|
|
// check if op1's range can be negative as the sign extension will
|
|
// cause the upper bits to be 1 instead of 0, invalidating the PE.
|
|
int_range<3> negs = range_negatives (op1.type ());
|
|
negs.intersect (op1);
|
|
if (!negs.undefined_p ())
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
unsigned prec = MIN (lhs_prec, op1_prec);
|
|
return bits_to_pe (prec);
|
|
}
|
|
|
|
bool
|
|
operator_min::fold_range (prange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2,
|
|
relation_trio) const
|
|
{
|
|
// For MIN/MAX expressions with pointers, we only care about
|
|
// nullness. If both are non null, then the result is nonnull.
|
|
// If both are null, then the result is null. Otherwise they
|
|
// are varying.
|
|
if (!range_includes_zero_p (op1)
|
|
&& !range_includes_zero_p (op2))
|
|
r.set_nonzero (type);
|
|
else if (op1.zero_p () && op2.zero_p ())
|
|
r.set_zero (type);
|
|
else
|
|
r.set_varying (type);
|
|
|
|
update_known_bitmask (r, MIN_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_max::fold_range (prange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2,
|
|
relation_trio) const
|
|
{
|
|
// For MIN/MAX expressions with pointers, we only care about
|
|
// nullness. If both are non null, then the result is nonnull.
|
|
// If both are null, then the result is null. Otherwise they
|
|
// are varying.
|
|
if (!range_includes_zero_p (op1)
|
|
&& !range_includes_zero_p (op2))
|
|
r.set_nonzero (type);
|
|
else if (op1.zero_p () && op2.zero_p ())
|
|
r.set_zero (type);
|
|
else
|
|
r.set_varying (type);
|
|
|
|
update_known_bitmask (r, MAX_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_addr_expr::op1_range (prange &r, tree type,
|
|
const prange &lhs,
|
|
const prange &op2,
|
|
relation_trio) const
|
|
{
|
|
if (empty_range_varying (r, type, lhs, op2))
|
|
return true;
|
|
|
|
// Return a non-null pointer of the LHS type (passed in op2), but only
|
|
// if we cant overflow, eitherwise a no-zero offset could wrap to zero.
|
|
// See PR 111009.
|
|
if (!lhs.undefined_p ()
|
|
&& !range_includes_zero_p (lhs)
|
|
&& TYPE_OVERFLOW_UNDEFINED (type))
|
|
r.set_nonzero (type);
|
|
else
|
|
r.set_varying (type);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_bitwise_and::fold_range (prange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2 ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
// For pointer types, we are really only interested in asserting
|
|
// whether the expression evaluates to non-NULL.
|
|
if (op1.zero_p () || op2.zero_p ())
|
|
r.set_zero (type);
|
|
else
|
|
r.set_varying (type);
|
|
|
|
update_known_bitmask (r, BIT_AND_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_equal::fold_range (irange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2,
|
|
relation_trio rel) const
|
|
{
|
|
if (relop_early_resolve (r, type, op1, op2, rel, VREL_EQ))
|
|
return true;
|
|
|
|
// We can be sure the values are always equal or not if both ranges
|
|
// consist of a single value, and then compare them.
|
|
bool op1_const = wi::eq_p (op1.lower_bound (), op1.upper_bound ());
|
|
bool op2_const = wi::eq_p (op2.lower_bound (), op2.upper_bound ());
|
|
if (op1_const && op2_const)
|
|
{
|
|
if (wi::eq_p (op1.lower_bound (), op2.upper_bound()))
|
|
r = range_true (type);
|
|
else
|
|
r = range_false (type);
|
|
}
|
|
else
|
|
{
|
|
// If ranges do not intersect, we know the range is not equal,
|
|
// otherwise we don't know anything for sure.
|
|
prange tmp = op1;
|
|
tmp.intersect (op2);
|
|
if (tmp.undefined_p ())
|
|
r = range_false (type);
|
|
// Check if a constant cannot satisfy the bitmask requirements.
|
|
else if (op2_const && !op1.get_bitmask ().member_p (op2.lower_bound ()))
|
|
r = range_false (type);
|
|
else if (op1_const && !op2.get_bitmask ().member_p (op1.lower_bound ()))
|
|
r = range_false (type);
|
|
else
|
|
r = range_true_and_false (type);
|
|
}
|
|
|
|
//update_known_bitmask (r, EQ_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_equal::op1_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op2,
|
|
relation_trio) const
|
|
{
|
|
switch (get_bool_state (r, lhs, type))
|
|
{
|
|
case BRS_TRUE:
|
|
// If it's true, the result is the same as OP2.
|
|
r = op2;
|
|
break;
|
|
|
|
case BRS_FALSE:
|
|
// If the result is false, the only time we know anything is
|
|
// if OP2 is a constant.
|
|
if (!op2.undefined_p ()
|
|
&& wi::eq_p (op2.lower_bound(), op2.upper_bound()))
|
|
{
|
|
r = op2;
|
|
r.invert ();
|
|
}
|
|
else
|
|
r.set_varying (type);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_equal::op2_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op1,
|
|
relation_trio rel) const
|
|
{
|
|
return operator_equal::op1_range (r, type, lhs, op1, rel.swap_op1_op2 ());
|
|
}
|
|
|
|
relation_kind
|
|
operator_equal::op1_op2_relation (const irange &lhs, const prange &,
|
|
const prange &) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return VREL_UNDEFINED;
|
|
|
|
// FALSE = op1 == op2 indicates NE_EXPR.
|
|
if (lhs.zero_p ())
|
|
return VREL_NE;
|
|
|
|
// TRUE = op1 == op2 indicates EQ_EXPR.
|
|
if (!range_includes_zero_p (lhs))
|
|
return VREL_EQ;
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
bool
|
|
operator_not_equal::fold_range (irange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2,
|
|
relation_trio rel) const
|
|
{
|
|
if (relop_early_resolve (r, type, op1, op2, rel, VREL_NE))
|
|
return true;
|
|
|
|
// We can be sure the values are always equal or not if both ranges
|
|
// consist of a single value, and then compare them.
|
|
bool op1_const = wi::eq_p (op1.lower_bound (), op1.upper_bound ());
|
|
bool op2_const = wi::eq_p (op2.lower_bound (), op2.upper_bound ());
|
|
if (op1_const && op2_const)
|
|
{
|
|
if (wi::ne_p (op1.lower_bound (), op2.upper_bound()))
|
|
r = range_true (type);
|
|
else
|
|
r = range_false (type);
|
|
}
|
|
else
|
|
{
|
|
// If ranges do not intersect, we know the range is not equal,
|
|
// otherwise we don't know anything for sure.
|
|
prange tmp = op1;
|
|
tmp.intersect (op2);
|
|
if (tmp.undefined_p ())
|
|
r = range_true (type);
|
|
// Check if a constant cannot satisfy the bitmask requirements.
|
|
else if (op2_const && !op1.get_bitmask ().member_p (op2.lower_bound ()))
|
|
r = range_true (type);
|
|
else if (op1_const && !op2.get_bitmask ().member_p (op1.lower_bound ()))
|
|
r = range_true (type);
|
|
else
|
|
r = range_true_and_false (type);
|
|
}
|
|
|
|
//update_known_bitmask (r, NE_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_not_equal::op1_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op2,
|
|
relation_trio) const
|
|
{
|
|
switch (get_bool_state (r, lhs, type))
|
|
{
|
|
case BRS_TRUE:
|
|
// If the result is true, the only time we know anything is if
|
|
// OP2 is a constant.
|
|
if (!op2.undefined_p ()
|
|
&& wi::eq_p (op2.lower_bound(), op2.upper_bound()))
|
|
{
|
|
r = op2;
|
|
r.invert ();
|
|
}
|
|
else
|
|
r.set_varying (type);
|
|
break;
|
|
|
|
case BRS_FALSE:
|
|
// If it's false, the result is the same as OP2.
|
|
r = op2;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool
|
|
operator_not_equal::op2_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op1,
|
|
relation_trio rel) const
|
|
{
|
|
return operator_not_equal::op1_range (r, type, lhs, op1, rel.swap_op1_op2 ());
|
|
}
|
|
|
|
relation_kind
|
|
operator_not_equal::op1_op2_relation (const irange &lhs, const prange &,
|
|
const prange &) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return VREL_UNDEFINED;
|
|
|
|
// FALSE = op1 != op2 indicates EQ_EXPR.
|
|
if (lhs.zero_p ())
|
|
return VREL_EQ;
|
|
|
|
// TRUE = op1 != op2 indicates NE_EXPR.
|
|
if (!range_includes_zero_p (lhs))
|
|
return VREL_NE;
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
bool
|
|
operator_lt::fold_range (irange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2,
|
|
relation_trio rel) const
|
|
{
|
|
if (relop_early_resolve (r, type, op1, op2, rel, VREL_LT))
|
|
return true;
|
|
|
|
signop sign = TYPE_SIGN (op1.type ());
|
|
gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
|
|
|
|
if (wi::lt_p (op1.upper_bound (), op2.lower_bound (), sign))
|
|
r = range_true (type);
|
|
else if (!wi::lt_p (op1.lower_bound (), op2.upper_bound (), sign))
|
|
r = range_false (type);
|
|
// Use nonzero bits to determine if < 0 is false.
|
|
else if (op2.zero_p () && !wi::neg_p (op1.get_nonzero_bits (), sign))
|
|
r = range_false (type);
|
|
else
|
|
r = range_true_and_false (type);
|
|
|
|
//update_known_bitmask (r, LT_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_lt::op1_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op2,
|
|
relation_trio) const
|
|
{
|
|
if (op2.undefined_p ())
|
|
return false;
|
|
|
|
switch (get_bool_state (r, lhs, type))
|
|
{
|
|
case BRS_TRUE:
|
|
build_lt (r, type, op2);
|
|
break;
|
|
|
|
case BRS_FALSE:
|
|
build_ge (r, type, op2);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_lt::op2_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op1,
|
|
relation_trio) const
|
|
{
|
|
if (op1.undefined_p ())
|
|
return false;
|
|
|
|
switch (get_bool_state (r, lhs, type))
|
|
{
|
|
case BRS_TRUE:
|
|
build_gt (r, type, op1);
|
|
break;
|
|
|
|
case BRS_FALSE:
|
|
build_le (r, type, op1);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
relation_kind
|
|
operator_lt::op1_op2_relation (const irange &lhs, const prange &,
|
|
const prange &) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return VREL_UNDEFINED;
|
|
|
|
// FALSE = op1 < op2 indicates GE_EXPR.
|
|
if (lhs.zero_p ())
|
|
return VREL_GE;
|
|
|
|
// TRUE = op1 < op2 indicates LT_EXPR.
|
|
if (!range_includes_zero_p (lhs))
|
|
return VREL_LT;
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
bool
|
|
operator_le::fold_range (irange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2,
|
|
relation_trio rel) const
|
|
{
|
|
if (relop_early_resolve (r, type, op1, op2, rel, VREL_LE))
|
|
return true;
|
|
|
|
signop sign = TYPE_SIGN (op1.type ());
|
|
gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
|
|
|
|
if (wi::le_p (op1.upper_bound (), op2.lower_bound (), sign))
|
|
r = range_true (type);
|
|
else if (!wi::le_p (op1.lower_bound (), op2.upper_bound (), sign))
|
|
r = range_false (type);
|
|
else
|
|
r = range_true_and_false (type);
|
|
|
|
//update_known_bitmask (r, LE_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_le::op1_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op2,
|
|
relation_trio) const
|
|
{
|
|
if (op2.undefined_p ())
|
|
return false;
|
|
|
|
switch (get_bool_state (r, lhs, type))
|
|
{
|
|
case BRS_TRUE:
|
|
build_le (r, type, op2);
|
|
break;
|
|
|
|
case BRS_FALSE:
|
|
build_gt (r, type, op2);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_le::op2_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op1,
|
|
relation_trio) const
|
|
{
|
|
if (op1.undefined_p ())
|
|
return false;
|
|
|
|
switch (get_bool_state (r, lhs, type))
|
|
{
|
|
case BRS_TRUE:
|
|
build_ge (r, type, op1);
|
|
break;
|
|
|
|
case BRS_FALSE:
|
|
build_lt (r, type, op1);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
relation_kind
|
|
operator_le::op1_op2_relation (const irange &lhs, const prange &,
|
|
const prange &) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return VREL_UNDEFINED;
|
|
|
|
// FALSE = op1 <= op2 indicates GT_EXPR.
|
|
if (lhs.zero_p ())
|
|
return VREL_GT;
|
|
|
|
// TRUE = op1 <= op2 indicates LE_EXPR.
|
|
if (!range_includes_zero_p (lhs))
|
|
return VREL_LE;
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
bool
|
|
operator_gt::fold_range (irange &r, tree type,
|
|
const prange &op1, const prange &op2,
|
|
relation_trio rel) const
|
|
{
|
|
if (relop_early_resolve (r, type, op1, op2, rel, VREL_GT))
|
|
return true;
|
|
|
|
signop sign = TYPE_SIGN (op1.type ());
|
|
gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
|
|
|
|
if (wi::gt_p (op1.lower_bound (), op2.upper_bound (), sign))
|
|
r = range_true (type);
|
|
else if (!wi::gt_p (op1.upper_bound (), op2.lower_bound (), sign))
|
|
r = range_false (type);
|
|
else
|
|
r = range_true_and_false (type);
|
|
|
|
//update_known_bitmask (r, GT_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_gt::op1_range (prange &r, tree type,
|
|
const irange &lhs, const prange &op2,
|
|
relation_trio) const
|
|
{
|
|
if (op2.undefined_p ())
|
|
return false;
|
|
|
|
switch (get_bool_state (r, lhs, type))
|
|
{
|
|
case BRS_TRUE:
|
|
build_gt (r, type, op2);
|
|
break;
|
|
|
|
case BRS_FALSE:
|
|
build_le (r, type, op2);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_gt::op2_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op1,
|
|
relation_trio) const
|
|
{
|
|
if (op1.undefined_p ())
|
|
return false;
|
|
|
|
switch (get_bool_state (r, lhs, type))
|
|
{
|
|
case BRS_TRUE:
|
|
build_lt (r, type, op1);
|
|
break;
|
|
|
|
case BRS_FALSE:
|
|
build_ge (r, type, op1);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
relation_kind
|
|
operator_gt::op1_op2_relation (const irange &lhs, const prange &,
|
|
const prange &) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return VREL_UNDEFINED;
|
|
|
|
// FALSE = op1 > op2 indicates LE_EXPR.
|
|
if (lhs.zero_p ())
|
|
return VREL_LE;
|
|
|
|
// TRUE = op1 > op2 indicates GT_EXPR.
|
|
if (!range_includes_zero_p (lhs))
|
|
return VREL_GT;
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
bool
|
|
operator_ge::fold_range (irange &r, tree type,
|
|
const prange &op1,
|
|
const prange &op2,
|
|
relation_trio rel) const
|
|
{
|
|
if (relop_early_resolve (r, type, op1, op2, rel, VREL_GE))
|
|
return true;
|
|
|
|
signop sign = TYPE_SIGN (op1.type ());
|
|
gcc_checking_assert (sign == TYPE_SIGN (op2.type ()));
|
|
|
|
if (wi::ge_p (op1.lower_bound (), op2.upper_bound (), sign))
|
|
r = range_true (type);
|
|
else if (!wi::ge_p (op1.upper_bound (), op2.lower_bound (), sign))
|
|
r = range_false (type);
|
|
else
|
|
r = range_true_and_false (type);
|
|
|
|
//update_known_bitmask (r, GE_EXPR, op1, op2);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_ge::op1_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op2,
|
|
relation_trio) const
|
|
{
|
|
if (op2.undefined_p ())
|
|
return false;
|
|
|
|
switch (get_bool_state (r, lhs, type))
|
|
{
|
|
case BRS_TRUE:
|
|
build_ge (r, type, op2);
|
|
break;
|
|
|
|
case BRS_FALSE:
|
|
build_lt (r, type, op2);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
operator_ge::op2_range (prange &r, tree type,
|
|
const irange &lhs,
|
|
const prange &op1,
|
|
relation_trio) const
|
|
{
|
|
if (op1.undefined_p ())
|
|
return false;
|
|
|
|
switch (get_bool_state (r, lhs, type))
|
|
{
|
|
case BRS_TRUE:
|
|
build_le (r, type, op1);
|
|
break;
|
|
|
|
case BRS_FALSE:
|
|
build_gt (r, type, op1);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
relation_kind
|
|
operator_ge::op1_op2_relation (const irange &lhs, const prange &,
|
|
const prange &) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return VREL_UNDEFINED;
|
|
|
|
// FALSE = op1 >= op2 indicates LT_EXPR.
|
|
if (lhs.zero_p ())
|
|
return VREL_LT;
|
|
|
|
// TRUE = op1 >= op2 indicates GE_EXPR.
|
|
if (!range_includes_zero_p (lhs))
|
|
return VREL_GE;
|
|
return VREL_VARYING;
|
|
}
|
|
|
|
// Initialize any pointer operators to the primary table
|
|
|
|
void
|
|
range_op_table::initialize_pointer_ops ()
|
|
{
|
|
set (POINTER_PLUS_EXPR, op_pointer_plus);
|
|
set (POINTER_DIFF_EXPR, op_pointer_diff);
|
|
}
|