mirror of
https://forge.sourceware.org/marek/gcc.git
synced 2026-02-21 19:35:36 -05:00
1894 lines
51 KiB
C++
1894 lines
51 KiB
C++
/* Gimple ranger SSA cache implementation.
|
|
Copyright (C) 2017-2026 Free Software Foundation, Inc.
|
|
Contributed by Andrew MacLeod <amacleod@redhat.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "insn-codes.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "ssa.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "gimple-range.h"
|
|
#include "value-range-storage.h"
|
|
#include "tree-cfg.h"
|
|
#include "target.h"
|
|
#include "attribs.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimple-walk.h"
|
|
#include "cfganal.h"
|
|
|
|
#define DEBUG_RANGE_CACHE (dump_file \
|
|
&& (param_ranger_debug & RANGER_DEBUG_CACHE))
|
|
|
|
// This class represents the API into a cache of ranges for an SSA_NAME.
|
|
// Routines must be implemented to set, get, and query if a value is set.
|
|
|
|
class ssa_block_ranges
|
|
{
|
|
public:
|
|
ssa_block_ranges (tree t) : m_type (t) { }
|
|
virtual bool set_bb_range (const_basic_block bb, const vrange &r) = 0;
|
|
virtual bool get_bb_range (vrange &r, const_basic_block bb) = 0;
|
|
virtual bool bb_range_p (const_basic_block bb) = 0;
|
|
|
|
void dump(FILE *f);
|
|
private:
|
|
tree m_type;
|
|
};
|
|
|
|
// Print the list of known ranges for file F in a nice format.
|
|
|
|
void
|
|
ssa_block_ranges::dump (FILE *f)
|
|
{
|
|
basic_block bb;
|
|
value_range r (m_type);
|
|
|
|
FOR_EACH_BB_FN (bb, cfun)
|
|
if (get_bb_range (r, bb))
|
|
{
|
|
fprintf (f, "BB%d -> ", bb->index);
|
|
r.dump (f);
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
// This class implements the range cache as a linear vector, indexed by BB.
|
|
// It caches a varying and undefined range which are used instead of
|
|
// allocating new ones each time.
|
|
|
|
class sbr_vector : public ssa_block_ranges
|
|
{
|
|
public:
|
|
sbr_vector (tree t, vrange_allocator *allocator, bool zero_p = true);
|
|
|
|
virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
|
|
virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
|
|
virtual bool bb_range_p (const_basic_block bb) override;
|
|
protected:
|
|
vrange_storage **m_tab; // Non growing vector.
|
|
int m_tab_size;
|
|
vrange_storage *m_varying;
|
|
vrange_storage *m_undefined;
|
|
tree m_type;
|
|
vrange_allocator *m_range_allocator;
|
|
bool m_zero_p;
|
|
void grow ();
|
|
};
|
|
|
|
|
|
// Initialize a block cache for an ssa_name of type T.
|
|
|
|
sbr_vector::sbr_vector (tree t, vrange_allocator *allocator, bool zero_p)
|
|
: ssa_block_ranges (t)
|
|
{
|
|
gcc_checking_assert (TYPE_P (t));
|
|
m_type = t;
|
|
m_zero_p = zero_p;
|
|
m_range_allocator = allocator;
|
|
m_tab_size = last_basic_block_for_fn (cfun) + 1;
|
|
m_tab = static_cast <vrange_storage **>
|
|
(allocator->alloc (m_tab_size * sizeof (vrange_storage *)));
|
|
if (zero_p)
|
|
memset (m_tab, 0, m_tab_size * sizeof (vrange *));
|
|
|
|
// Create the cached type range.
|
|
m_varying = m_range_allocator->clone_varying (t);
|
|
m_undefined = m_range_allocator->clone_undefined (t);
|
|
}
|
|
|
|
// Grow the vector when the CFG has increased in size.
|
|
|
|
void
|
|
sbr_vector::grow ()
|
|
{
|
|
int curr_bb_size = last_basic_block_for_fn (cfun);
|
|
gcc_checking_assert (curr_bb_size > m_tab_size);
|
|
|
|
// Increase the max of a)128, b)needed increase * 2, c)10% of current_size.
|
|
int inc = MAX ((curr_bb_size - m_tab_size) * 2, 128);
|
|
inc = MAX (inc, curr_bb_size / 10);
|
|
int new_size = inc + curr_bb_size;
|
|
|
|
// Allocate new memory, copy the old vector and clear the new space.
|
|
vrange_storage **t = static_cast <vrange_storage **>
|
|
(m_range_allocator->alloc (new_size * sizeof (vrange_storage *)));
|
|
memcpy (t, m_tab, m_tab_size * sizeof (vrange_storage *));
|
|
if (m_zero_p)
|
|
memset (t + m_tab_size, 0, (new_size - m_tab_size) * sizeof (vrange_storage *));
|
|
|
|
m_tab = t;
|
|
m_tab_size = new_size;
|
|
}
|
|
|
|
// Set the range for block BB to be R.
|
|
|
|
bool
|
|
sbr_vector::set_bb_range (const_basic_block bb, const vrange &r)
|
|
{
|
|
vrange_storage *m;
|
|
if (bb->index >= m_tab_size)
|
|
grow ();
|
|
if (r.varying_p ())
|
|
m = m_varying;
|
|
else if (r.undefined_p ())
|
|
m = m_undefined;
|
|
else
|
|
m = m_range_allocator->clone (r);
|
|
m_tab[bb->index] = m;
|
|
return true;
|
|
}
|
|
|
|
// Return the range associated with block BB in R. Return false if
|
|
// there is no range.
|
|
|
|
bool
|
|
sbr_vector::get_bb_range (vrange &r, const_basic_block bb)
|
|
{
|
|
if (bb->index >= m_tab_size)
|
|
return false;
|
|
vrange_storage *m = m_tab[bb->index];
|
|
if (m)
|
|
{
|
|
m->get_vrange (r, m_type);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return true if a range is present.
|
|
|
|
bool
|
|
sbr_vector::bb_range_p (const_basic_block bb)
|
|
{
|
|
if (bb->index < m_tab_size)
|
|
return m_tab[bb->index] != NULL;
|
|
return false;
|
|
}
|
|
|
|
// Like an sbr_vector, except it uses a bitmap to manage whetehr vale is set
|
|
// or not rather than cleared memory.
|
|
|
|
class sbr_lazy_vector : public sbr_vector
|
|
{
|
|
public:
|
|
sbr_lazy_vector (tree t, vrange_allocator *allocator, bitmap_obstack *bm);
|
|
|
|
virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
|
|
virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
|
|
virtual bool bb_range_p (const_basic_block bb) override;
|
|
protected:
|
|
bitmap m_has_value;
|
|
};
|
|
|
|
sbr_lazy_vector::sbr_lazy_vector (tree t, vrange_allocator *allocator,
|
|
bitmap_obstack *bm)
|
|
: sbr_vector (t, allocator, false)
|
|
{
|
|
m_has_value = BITMAP_ALLOC (bm);
|
|
}
|
|
|
|
bool
|
|
sbr_lazy_vector::set_bb_range (const_basic_block bb, const vrange &r)
|
|
{
|
|
sbr_vector::set_bb_range (bb, r);
|
|
bitmap_set_bit (m_has_value, bb->index);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
sbr_lazy_vector::get_bb_range (vrange &r, const_basic_block bb)
|
|
{
|
|
if (bitmap_bit_p (m_has_value, bb->index))
|
|
return sbr_vector::get_bb_range (r, bb);
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
sbr_lazy_vector::bb_range_p (const_basic_block bb)
|
|
{
|
|
return bitmap_bit_p (m_has_value, bb->index);
|
|
}
|
|
|
|
// This class implements the on entry cache via a sparse bitmap.
|
|
// It uses the quad bit routines to access 4 bits at a time.
|
|
// A value of 0 (the default) means there is no entry, and a value of
|
|
// 1 thru SBR_NUM represents an element in the m_range vector.
|
|
// Varying is given the first value (1) and pre-cached.
|
|
// SBR_NUM + 1 represents the value of UNDEFINED, and is never stored.
|
|
// SBR_NUM is the number of values that can be cached.
|
|
// Indexes are 1..SBR_NUM and are stored locally at m_range[0..SBR_NUM-1]
|
|
|
|
#define SBR_NUM 14
|
|
#define SBR_UNDEF SBR_NUM + 1
|
|
#define SBR_VARYING 1
|
|
|
|
class sbr_sparse_bitmap : public ssa_block_ranges
|
|
{
|
|
public:
|
|
sbr_sparse_bitmap (tree t, vrange_allocator *allocator, bitmap_obstack *bm);
|
|
virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
|
|
virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
|
|
virtual bool bb_range_p (const_basic_block bb) override;
|
|
private:
|
|
void bitmap_set_quad (bitmap head, int quad, int quad_value);
|
|
int bitmap_get_quad (const_bitmap head, int quad);
|
|
vrange_allocator *m_range_allocator;
|
|
vrange_storage *m_range[SBR_NUM];
|
|
bitmap_head bitvec;
|
|
tree m_type;
|
|
};
|
|
|
|
// Initialize a block cache for an ssa_name of type T.
|
|
|
|
sbr_sparse_bitmap::sbr_sparse_bitmap (tree t, vrange_allocator *allocator,
|
|
bitmap_obstack *bm)
|
|
: ssa_block_ranges (t)
|
|
{
|
|
gcc_checking_assert (TYPE_P (t));
|
|
m_type = t;
|
|
bitmap_initialize (&bitvec, bm);
|
|
bitmap_tree_view (&bitvec);
|
|
m_range_allocator = allocator;
|
|
// Pre-cache varying.
|
|
m_range[0] = m_range_allocator->clone_varying (t);
|
|
// Pre-cache zero and non-zero values for pointers.
|
|
if (POINTER_TYPE_P (t))
|
|
{
|
|
prange nonzero;
|
|
nonzero.set_nonzero (t);
|
|
m_range[1] = m_range_allocator->clone (nonzero);
|
|
prange zero;
|
|
zero.set_zero (t);
|
|
m_range[2] = m_range_allocator->clone (zero);
|
|
}
|
|
else
|
|
m_range[1] = m_range[2] = NULL;
|
|
// Clear SBR_NUM entries.
|
|
for (int x = 3; x < SBR_NUM; x++)
|
|
m_range[x] = 0;
|
|
}
|
|
|
|
// Set 4 bit values in a sparse bitmap. This allows a bitmap to
|
|
// function as a sparse array of 4 bit values.
|
|
// QUAD is the index, QUAD_VALUE is the 4 bit value to set.
|
|
|
|
inline void
|
|
sbr_sparse_bitmap::bitmap_set_quad (bitmap head, int quad, int quad_value)
|
|
{
|
|
bitmap_set_aligned_chunk (head, quad, 4, (BITMAP_WORD) quad_value);
|
|
}
|
|
|
|
// Get a 4 bit value from a sparse bitmap. This allows a bitmap to
|
|
// function as a sparse array of 4 bit values.
|
|
// QUAD is the index.
|
|
inline int
|
|
sbr_sparse_bitmap::bitmap_get_quad (const_bitmap head, int quad)
|
|
{
|
|
return (int) bitmap_get_aligned_chunk (head, quad, 4);
|
|
}
|
|
|
|
// Set the range on entry to basic block BB to R.
|
|
|
|
bool
|
|
sbr_sparse_bitmap::set_bb_range (const_basic_block bb, const vrange &r)
|
|
{
|
|
if (r.undefined_p ())
|
|
{
|
|
bitmap_set_quad (&bitvec, bb->index, SBR_UNDEF);
|
|
return true;
|
|
}
|
|
|
|
// Loop thru the values to see if R is already present.
|
|
for (int x = 0; x < SBR_NUM; x++)
|
|
if (!m_range[x] || m_range[x]->equal_p (r))
|
|
{
|
|
if (!m_range[x])
|
|
m_range[x] = m_range_allocator->clone (r);
|
|
bitmap_set_quad (&bitvec, bb->index, x + 1);
|
|
return true;
|
|
}
|
|
// All values are taken, default to VARYING.
|
|
bitmap_set_quad (&bitvec, bb->index, SBR_VARYING);
|
|
return false;
|
|
}
|
|
|
|
// Return the range associated with block BB in R. Return false if
|
|
// there is no range.
|
|
|
|
bool
|
|
sbr_sparse_bitmap::get_bb_range (vrange &r, const_basic_block bb)
|
|
{
|
|
int value = bitmap_get_quad (&bitvec, bb->index);
|
|
|
|
if (!value)
|
|
return false;
|
|
|
|
gcc_checking_assert (value <= SBR_UNDEF);
|
|
if (value == SBR_UNDEF)
|
|
r.set_undefined ();
|
|
else
|
|
m_range[value - 1]->get_vrange (r, m_type);
|
|
return true;
|
|
}
|
|
|
|
// Return true if a range is present.
|
|
|
|
bool
|
|
sbr_sparse_bitmap::bb_range_p (const_basic_block bb)
|
|
{
|
|
return (bitmap_get_quad (&bitvec, bb->index) != 0);
|
|
}
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
// Initialize the block cache.
|
|
|
|
block_range_cache::block_range_cache ()
|
|
{
|
|
bitmap_obstack_initialize (&m_bitmaps);
|
|
m_ssa_ranges.create (0);
|
|
m_ssa_ranges.safe_grow_cleared (num_ssa_names);
|
|
m_range_allocator = new vrange_allocator;
|
|
}
|
|
|
|
// Remove any m_block_caches which have been created.
|
|
|
|
block_range_cache::~block_range_cache ()
|
|
{
|
|
delete m_range_allocator;
|
|
// Release the vector itself.
|
|
m_ssa_ranges.release ();
|
|
bitmap_obstack_release (&m_bitmaps);
|
|
}
|
|
|
|
// Set the range for NAME on entry to block BB to R.
|
|
// If it has not been accessed yet, allocate it first.
|
|
|
|
bool
|
|
block_range_cache::set_bb_range (tree name, const_basic_block bb,
|
|
const vrange &r)
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_ssa_ranges.length ())
|
|
m_ssa_ranges.safe_grow_cleared (num_ssa_names);
|
|
|
|
if (!m_ssa_ranges[v])
|
|
{
|
|
// Use sparse bitmap representation if there are too many basic blocks.
|
|
if (last_basic_block_for_fn (cfun) > param_vrp_sparse_threshold)
|
|
{
|
|
void *r = m_range_allocator->alloc (sizeof (sbr_sparse_bitmap));
|
|
m_ssa_ranges[v] = new (r) sbr_sparse_bitmap (TREE_TYPE (name),
|
|
m_range_allocator,
|
|
&m_bitmaps);
|
|
}
|
|
else if (last_basic_block_for_fn (cfun) < param_vrp_vector_threshold)
|
|
{
|
|
// For small CFGs use the basic vector implemntation.
|
|
void *r = m_range_allocator->alloc (sizeof (sbr_vector));
|
|
m_ssa_ranges[v] = new (r) sbr_vector (TREE_TYPE (name),
|
|
m_range_allocator);
|
|
}
|
|
else
|
|
{
|
|
// Otherwise use the sparse vector implementation.
|
|
void *r = m_range_allocator->alloc (sizeof (sbr_lazy_vector));
|
|
m_ssa_ranges[v] = new (r) sbr_lazy_vector (TREE_TYPE (name),
|
|
m_range_allocator,
|
|
&m_bitmaps);
|
|
}
|
|
}
|
|
return m_ssa_ranges[v]->set_bb_range (bb, r);
|
|
}
|
|
|
|
|
|
// Return a pointer to the ssa_block_cache for NAME. If it has not been
|
|
// accessed yet, return NULL.
|
|
|
|
inline ssa_block_ranges *
|
|
block_range_cache::query_block_ranges (tree name)
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_ssa_ranges.length () || !m_ssa_ranges[v])
|
|
return NULL;
|
|
return m_ssa_ranges[v];
|
|
}
|
|
|
|
|
|
|
|
// Return the range for NAME on entry to BB in R. Return true if there
|
|
// is one.
|
|
|
|
bool
|
|
block_range_cache::get_bb_range (vrange &r, tree name, const_basic_block bb)
|
|
{
|
|
ssa_block_ranges *ptr = query_block_ranges (name);
|
|
if (ptr)
|
|
return ptr->get_bb_range (r, bb);
|
|
return false;
|
|
}
|
|
|
|
// Return true if NAME has a range set in block BB.
|
|
|
|
bool
|
|
block_range_cache::bb_range_p (tree name, const_basic_block bb)
|
|
{
|
|
ssa_block_ranges *ptr = query_block_ranges (name);
|
|
if (ptr)
|
|
return ptr->bb_range_p (bb);
|
|
return false;
|
|
}
|
|
|
|
// Print all known block caches to file F.
|
|
|
|
void
|
|
block_range_cache::dump (FILE *f)
|
|
{
|
|
unsigned x;
|
|
for (x = 1; x < m_ssa_ranges.length (); ++x)
|
|
{
|
|
if (m_ssa_ranges[x])
|
|
{
|
|
fprintf (f, " Ranges for ");
|
|
print_generic_expr (f, ssa_name (x), TDF_NONE);
|
|
fprintf (f, ":\n");
|
|
m_ssa_ranges[x]->dump (f);
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print all known ranges on entry to block BB to file F.
|
|
|
|
void
|
|
block_range_cache::dump (FILE *f, basic_block bb, bool print_varying)
|
|
{
|
|
unsigned x;
|
|
bool summarize_varying = false;
|
|
for (x = 1; x < m_ssa_ranges.length (); ++x)
|
|
{
|
|
if (!m_ssa_ranges[x])
|
|
continue;
|
|
|
|
if (!gimple_range_ssa_p (ssa_name (x)))
|
|
continue;
|
|
|
|
value_range r (TREE_TYPE (ssa_name (x)));
|
|
if (m_ssa_ranges[x]->get_bb_range (r, bb))
|
|
{
|
|
if (!print_varying && r.varying_p ())
|
|
{
|
|
summarize_varying = true;
|
|
continue;
|
|
}
|
|
print_generic_expr (f, ssa_name (x), TDF_NONE);
|
|
fprintf (f, "\t");
|
|
r.dump(f);
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
// If there were any varying entries, lump them all together.
|
|
if (summarize_varying)
|
|
{
|
|
fprintf (f, "VARYING_P on entry : ");
|
|
for (x = 1; x < m_ssa_ranges.length (); ++x)
|
|
{
|
|
if (!m_ssa_ranges[x])
|
|
continue;
|
|
|
|
if (!gimple_range_ssa_p (ssa_name (x)))
|
|
continue;
|
|
|
|
value_range r (TREE_TYPE (ssa_name (x)));
|
|
if (m_ssa_ranges[x]->get_bb_range (r, bb))
|
|
{
|
|
if (r.varying_p ())
|
|
{
|
|
print_generic_expr (f, ssa_name (x), TDF_NONE);
|
|
fprintf (f, " ");
|
|
}
|
|
}
|
|
}
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
// Initialize an ssa cache.
|
|
|
|
ssa_cache::ssa_cache ()
|
|
{
|
|
m_tab.create (0);
|
|
m_range_allocator = new vrange_allocator;
|
|
}
|
|
|
|
// Deconstruct an ssa cache.
|
|
|
|
ssa_cache::~ssa_cache ()
|
|
{
|
|
m_tab.release ();
|
|
delete m_range_allocator;
|
|
}
|
|
|
|
// Enable a query to evaluate staements/ramnges based on picking up ranges
|
|
// from just an ssa-cache.
|
|
|
|
bool
|
|
ssa_cache::range_of_expr (vrange &r, tree expr, gimple *stmt)
|
|
{
|
|
if (!gimple_range_ssa_p (expr))
|
|
return get_tree_range (r, expr, stmt);
|
|
|
|
if (!get_range (r, expr))
|
|
gimple_range_global (r, expr, cfun);
|
|
return true;
|
|
}
|
|
|
|
// Return TRUE if the global range of NAME has a cache entry.
|
|
|
|
bool
|
|
ssa_cache::has_range (tree name) const
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_tab.length ())
|
|
return false;
|
|
return m_tab[v] != NULL;
|
|
}
|
|
|
|
// Retrieve the global range of NAME from cache memory if it exists.
|
|
// Return the value in R.
|
|
|
|
bool
|
|
ssa_cache::get_range (vrange &r, tree name) const
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_tab.length ())
|
|
return false;
|
|
|
|
vrange_storage *stow = m_tab[v];
|
|
if (!stow)
|
|
return false;
|
|
stow->get_vrange (r, TREE_TYPE (name));
|
|
return true;
|
|
}
|
|
|
|
// Set the range for NAME to R in the ssa cache.
|
|
// Return TRUE if there was already a range set, otherwise false.
|
|
|
|
bool
|
|
ssa_cache::set_range (tree name, const vrange &r)
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_tab.length ())
|
|
m_tab.safe_grow_cleared (num_ssa_names + 1);
|
|
|
|
vrange_storage *m = m_tab[v];
|
|
if (m && m->fits_p (r))
|
|
m->set_vrange (r);
|
|
else
|
|
m_tab[v] = m_range_allocator->clone (r);
|
|
return m != NULL;
|
|
}
|
|
|
|
// If NAME has a range, intersect it with R, otherwise set it to R.
|
|
// Return TRUE if the range is new or changes.
|
|
|
|
bool
|
|
ssa_cache::merge_range (tree name, const vrange &r)
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_tab.length ())
|
|
m_tab.safe_grow_cleared (num_ssa_names + 1);
|
|
|
|
vrange_storage *m = m_tab[v];
|
|
// Check if this is a new value.
|
|
if (!m)
|
|
m_tab[v] = m_range_allocator->clone (r);
|
|
else
|
|
{
|
|
value_range curr (TREE_TYPE (name));
|
|
m->get_vrange (curr, TREE_TYPE (name));
|
|
// If there is no change, return false.
|
|
if (!curr.intersect (r))
|
|
return false;
|
|
|
|
if (m->fits_p (curr))
|
|
m->set_vrange (curr);
|
|
else
|
|
m_tab[v] = m_range_allocator->clone (curr);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Set the range for NAME to R in the ssa cache.
|
|
|
|
void
|
|
ssa_cache::clear_range (tree name)
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_tab.length ())
|
|
return;
|
|
m_tab[v] = NULL;
|
|
}
|
|
|
|
// Clear the ssa cache.
|
|
|
|
void
|
|
ssa_cache::clear ()
|
|
{
|
|
if (m_tab.address ())
|
|
memset (m_tab.address(), 0, m_tab.length () * sizeof (vrange *));
|
|
}
|
|
|
|
// Dump the contents of the ssa cache to F.
|
|
|
|
void
|
|
ssa_cache::dump (FILE *f)
|
|
{
|
|
for (unsigned x = 1; x < num_ssa_names; x++)
|
|
{
|
|
if (!gimple_range_ssa_p (ssa_name (x)))
|
|
continue;
|
|
value_range r (TREE_TYPE (ssa_name (x)));
|
|
// Dump all non-varying ranges.
|
|
if (get_range (r, ssa_name (x)) && !r.varying_p ())
|
|
{
|
|
print_generic_expr (f, ssa_name (x), TDF_NONE);
|
|
fprintf (f, " : ");
|
|
r.dump (f);
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Construct an ssa_lazy_cache. If OB is specified, us it, otherwise use
|
|
// a local bitmap obstack.
|
|
|
|
ssa_lazy_cache::ssa_lazy_cache (bitmap_obstack *ob)
|
|
{
|
|
if (!ob)
|
|
{
|
|
bitmap_obstack_initialize (&m_bitmaps);
|
|
m_ob = &m_bitmaps;
|
|
}
|
|
else
|
|
m_ob = ob;
|
|
active_p = BITMAP_ALLOC (m_ob);
|
|
}
|
|
|
|
// Destruct an sa_lazy_cache. Free the bitmap if it came from a different
|
|
// obstack, or release the obstack if it was a local one.
|
|
|
|
ssa_lazy_cache::~ssa_lazy_cache ()
|
|
{
|
|
if (m_ob == &m_bitmaps)
|
|
bitmap_obstack_release (&m_bitmaps);
|
|
else
|
|
BITMAP_FREE (active_p);
|
|
}
|
|
|
|
// Return true if NAME has an active range in the cache.
|
|
|
|
bool
|
|
ssa_lazy_cache::has_range (tree name) const
|
|
{
|
|
return bitmap_bit_p (active_p, SSA_NAME_VERSION (name));
|
|
}
|
|
|
|
// Set range of NAME to R in a lazy cache. Return FALSE if it did not already
|
|
// have a range.
|
|
|
|
bool
|
|
ssa_lazy_cache::set_range (tree name, const vrange &r)
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (!bitmap_set_bit (active_p, v))
|
|
{
|
|
// There is already an entry, simply set it.
|
|
gcc_checking_assert (v < m_tab.length ());
|
|
return ssa_cache::set_range (name, r);
|
|
}
|
|
if (v >= m_tab.length ())
|
|
m_tab.safe_grow (num_ssa_names + 1);
|
|
m_tab[v] = m_range_allocator->clone (r);
|
|
return false;
|
|
}
|
|
|
|
// If NAME has a range, intersect it with R, otherwise set it to R.
|
|
// Return TRUE if the range is new or changes.
|
|
|
|
bool
|
|
ssa_lazy_cache::merge_range (tree name, const vrange &r)
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (!bitmap_set_bit (active_p, v))
|
|
{
|
|
// There is already an entry, simply merge it.
|
|
gcc_checking_assert (v < m_tab.length ());
|
|
return ssa_cache::merge_range (name, r);
|
|
}
|
|
if (v >= m_tab.length ())
|
|
m_tab.safe_grow (num_ssa_names + 1);
|
|
m_tab[v] = m_range_allocator->clone (r);
|
|
return true;
|
|
}
|
|
|
|
// Merge all elements of CACHE with this cache.
|
|
// Any names in CACHE that are not in this one are added.
|
|
// Any names in both are merged via merge_range..
|
|
|
|
void
|
|
ssa_lazy_cache::merge (const ssa_lazy_cache &cache)
|
|
{
|
|
unsigned x;
|
|
bitmap_iterator bi;
|
|
EXECUTE_IF_SET_IN_BITMAP (cache.active_p, 0, x, bi)
|
|
{
|
|
tree name = ssa_name (x);
|
|
value_range r(TREE_TYPE (name));
|
|
cache.get_range (r, name);
|
|
merge_range (ssa_name (x), r);
|
|
}
|
|
}
|
|
|
|
// Return TRUE if NAME has a range, and return it in R.
|
|
|
|
bool
|
|
ssa_lazy_cache::get_range (vrange &r, tree name) const
|
|
{
|
|
if (!bitmap_bit_p (active_p, SSA_NAME_VERSION (name)))
|
|
return false;
|
|
return ssa_cache::get_range (r, name);
|
|
}
|
|
|
|
// Remove NAME from the active range list.
|
|
|
|
void
|
|
ssa_lazy_cache::clear_range (tree name)
|
|
{
|
|
bitmap_clear_bit (active_p, SSA_NAME_VERSION (name));
|
|
}
|
|
|
|
// Remove all ranges from the active range list.
|
|
|
|
void
|
|
ssa_lazy_cache::clear ()
|
|
{
|
|
bitmap_clear (active_p);
|
|
}
|
|
|
|
// --------------------------------------------------------------------------
|
|
|
|
|
|
// This class will manage the timestamps for each ssa_name.
|
|
// When a value is calculated, the timestamp is set to the current time.
|
|
// Current time is then incremented. Any dependencies will already have
|
|
// been calculated, and will thus have older timestamps.
|
|
// If one of those values is ever calculated again, it will get a newer
|
|
// timestamp, and the "current_p" check will fail.
|
|
|
|
class temporal_cache
|
|
{
|
|
public:
|
|
temporal_cache ();
|
|
~temporal_cache ();
|
|
bool current_p (tree name, tree dep1, tree dep2) const;
|
|
void set_timestamp (tree name);
|
|
void set_always_current (tree name, bool value);
|
|
bool always_current_p (tree name) const;
|
|
private:
|
|
int temporal_value (unsigned ssa) const;
|
|
int m_current_time;
|
|
vec <int> m_timestamp;
|
|
};
|
|
|
|
inline
|
|
temporal_cache::temporal_cache ()
|
|
{
|
|
m_current_time = 1;
|
|
m_timestamp.create (0);
|
|
m_timestamp.safe_grow_cleared (num_ssa_names);
|
|
}
|
|
|
|
inline
|
|
temporal_cache::~temporal_cache ()
|
|
{
|
|
m_timestamp.release ();
|
|
}
|
|
|
|
// Return the timestamp value for SSA, or 0 if there isn't one.
|
|
|
|
inline int
|
|
temporal_cache::temporal_value (unsigned ssa) const
|
|
{
|
|
if (ssa >= m_timestamp.length ())
|
|
return 0;
|
|
return abs (m_timestamp[ssa]);
|
|
}
|
|
|
|
// Return TRUE if the timestamp for NAME is newer than any of its dependents.
|
|
// Up to 2 dependencies can be checked.
|
|
|
|
bool
|
|
temporal_cache::current_p (tree name, tree dep1, tree dep2) const
|
|
{
|
|
if (always_current_p (name))
|
|
return true;
|
|
|
|
// Any non-registered dependencies will have a value of 0 and thus be older.
|
|
// Return true if time is newer than either dependent.
|
|
int ts = temporal_value (SSA_NAME_VERSION (name));
|
|
if (dep1 && ts < temporal_value (SSA_NAME_VERSION (dep1)))
|
|
return false;
|
|
if (dep2 && ts < temporal_value (SSA_NAME_VERSION (dep2)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// This increments the global timer and sets the timestamp for NAME.
|
|
|
|
inline void
|
|
temporal_cache::set_timestamp (tree name)
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_timestamp.length ())
|
|
m_timestamp.safe_grow_cleared (num_ssa_names + 20);
|
|
m_timestamp[v] = ++m_current_time;
|
|
}
|
|
|
|
// Set the timestamp to 0, marking it as "always up to date".
|
|
|
|
inline void
|
|
temporal_cache::set_always_current (tree name, bool value)
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_timestamp.length ())
|
|
m_timestamp.safe_grow_cleared (num_ssa_names + 20);
|
|
|
|
int ts = abs (m_timestamp[v]);
|
|
// If this does not have a timestamp, create one.
|
|
if (ts == 0)
|
|
ts = ++m_current_time;
|
|
m_timestamp[v] = value ? -ts : ts;
|
|
}
|
|
|
|
// Return true if NAME is always current.
|
|
|
|
inline bool
|
|
temporal_cache::always_current_p (tree name) const
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_timestamp.length ())
|
|
return false;
|
|
return m_timestamp[v] <= 0;
|
|
}
|
|
|
|
// --------------------------------------------------------------------------
|
|
|
|
// This class provides an abstraction of a list of blocks to be updated
|
|
// by the cache. It is currently a stack but could be changed. It also
|
|
// maintains a list of blocks which have failed propagation, and does not
|
|
// enter any of those blocks into the list.
|
|
|
|
// A vector over the BBs is maintained, and an entry of 0 means it is not in
|
|
// a list. Otherwise, the entry is the next block in the list. -1 terminates
|
|
// the list. m_head points to the top of the list, -1 if the list is empty.
|
|
|
|
class update_list
|
|
{
|
|
public:
|
|
update_list ();
|
|
~update_list ();
|
|
void add (basic_block bb);
|
|
basic_block pop ();
|
|
inline bool empty_p () { return m_update_head == -1; }
|
|
inline void clear_failures () { bitmap_clear (m_propfail); }
|
|
inline void propagation_failed (basic_block bb)
|
|
{ bitmap_set_bit (m_propfail, bb->index); }
|
|
private:
|
|
vec<int> m_update_list;
|
|
int m_update_head;
|
|
bitmap m_propfail;
|
|
bitmap_obstack m_bitmaps;
|
|
};
|
|
|
|
// Create an update list.
|
|
|
|
update_list::update_list ()
|
|
{
|
|
m_update_list.create (0);
|
|
m_update_list.safe_grow_cleared (last_basic_block_for_fn (cfun) + 64);
|
|
m_update_head = -1;
|
|
bitmap_obstack_initialize (&m_bitmaps);
|
|
m_propfail = BITMAP_ALLOC (&m_bitmaps);
|
|
}
|
|
|
|
// Destroy an update list.
|
|
|
|
update_list::~update_list ()
|
|
{
|
|
m_update_list.release ();
|
|
bitmap_obstack_release (&m_bitmaps);
|
|
}
|
|
|
|
// Add BB to the list of blocks to update, unless it's already in the list.
|
|
|
|
void
|
|
update_list::add (basic_block bb)
|
|
{
|
|
int i = bb->index;
|
|
// If propagation has failed for BB, or its already in the list, don't
|
|
// add it again.
|
|
if ((unsigned)i >= m_update_list.length ())
|
|
m_update_list.safe_grow_cleared (i + 64);
|
|
if (!m_update_list[i] && !bitmap_bit_p (m_propfail, i))
|
|
{
|
|
if (empty_p ())
|
|
{
|
|
m_update_head = i;
|
|
m_update_list[i] = -1;
|
|
}
|
|
else
|
|
{
|
|
gcc_checking_assert (m_update_head > 0);
|
|
m_update_list[i] = m_update_head;
|
|
m_update_head = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove a block from the list.
|
|
|
|
basic_block
|
|
update_list::pop ()
|
|
{
|
|
gcc_checking_assert (!empty_p ());
|
|
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, m_update_head);
|
|
int pop = m_update_head;
|
|
m_update_head = m_update_list[pop];
|
|
m_update_list[pop] = 0;
|
|
return bb;
|
|
}
|
|
|
|
// --------------------------------------------------------------------------
|
|
|
|
ranger_cache::ranger_cache (int not_executable_flag, bool use_imm_uses)
|
|
{
|
|
m_workback = vNULL;
|
|
m_temporal = new temporal_cache;
|
|
|
|
// If DOM info is available, spawn an oracle as well.
|
|
create_relation_oracle ();
|
|
// Create an infer oracle using this cache as the range query. The cache
|
|
// version acts as a read-only query, and will spawn no additional lookups.
|
|
// It just ues what is already known.
|
|
create_infer_oracle (this, use_imm_uses);
|
|
create_gori (not_executable_flag, param_vrp_switch_limit);
|
|
|
|
unsigned x, lim = last_basic_block_for_fn (cfun);
|
|
// Calculate outgoing range info upfront. This will fully populate the
|
|
// m_maybe_variant bitmap which will help eliminate processing of names
|
|
// which never have their ranges adjusted.
|
|
for (x = 0; x < lim ; x++)
|
|
{
|
|
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, x);
|
|
if (bb)
|
|
gori_ssa ()->exports (bb);
|
|
}
|
|
m_update = new update_list ();
|
|
}
|
|
|
|
ranger_cache::~ranger_cache ()
|
|
{
|
|
delete m_update;
|
|
destroy_infer_oracle ();
|
|
destroy_relation_oracle ();
|
|
delete m_temporal;
|
|
m_workback.release ();
|
|
}
|
|
|
|
// Dump the global caches to file F. if GORI_DUMP is true, dump the
|
|
// gori map as well.
|
|
|
|
void
|
|
ranger_cache::dump (FILE *f)
|
|
{
|
|
fprintf (f, "Non-varying global ranges:\n");
|
|
fprintf (f, "=========================:\n");
|
|
m_globals.dump (f);
|
|
fprintf (f, "\n");
|
|
}
|
|
|
|
// Dump the caches for basic block BB to file F.
|
|
|
|
void
|
|
ranger_cache::dump_bb (FILE *f, basic_block bb)
|
|
{
|
|
gori_ssa ()->dump (f, bb, false);
|
|
m_on_entry.dump (f, bb);
|
|
m_relation->dump (f, bb);
|
|
}
|
|
|
|
// Get the global range for NAME, and return in R. Return false if the
|
|
// global range is not set, and return the legacy global value in R.
|
|
|
|
bool
|
|
ranger_cache::get_global_range (vrange &r, tree name) const
|
|
{
|
|
if (m_globals.get_range (r, name))
|
|
return true;
|
|
gimple_range_global (r, name);
|
|
return false;
|
|
}
|
|
|
|
// Get the global range for NAME, and return in R. Return false if the
|
|
// global range is not set, and R will contain the legacy global value.
|
|
// CURRENT_P is set to true if the value was in cache and not stale.
|
|
// Otherwise, set CURRENT_P to false and mark as it always current.
|
|
// If the global cache did not have a value, initialize it as well.
|
|
// After this call, the global cache will have a value.
|
|
|
|
bool
|
|
ranger_cache::get_global_range (vrange &r, tree name, bool ¤t_p)
|
|
{
|
|
bool had_global = get_global_range (r, name);
|
|
|
|
// If there was a global value, set current flag, otherwise set a value.
|
|
current_p = false;
|
|
if (had_global)
|
|
current_p = r.singleton_p ()
|
|
|| m_temporal->current_p (name, gori_ssa ()->depend1 (name),
|
|
gori_ssa ()->depend2 (name));
|
|
else
|
|
{
|
|
// If no global value has been set and value is VARYING, fold the stmt
|
|
// using just global ranges to get a better initial value.
|
|
// After inlining we tend to decide some things are constant, so
|
|
// so not do this evaluation after inlining.
|
|
if (r.varying_p () && !cfun->after_inlining)
|
|
{
|
|
gimple *s = SSA_NAME_DEF_STMT (name);
|
|
// Do not process PHIs as SCEV may be in use and it can
|
|
// spawn cyclic lookups.
|
|
if (gimple_get_lhs (s) == name && !is_a<gphi *> (s))
|
|
{
|
|
if (!fold_range (r, s, get_global_range_query ()))
|
|
gimple_range_global (r, name);
|
|
}
|
|
}
|
|
m_globals.set_range (name, r);
|
|
}
|
|
|
|
// If the existing value was not current, mark it as always current.
|
|
if (!current_p)
|
|
m_temporal->set_always_current (name, true);
|
|
return had_global;
|
|
}
|
|
|
|
// Consumers of NAME that have already calculated values should recalculate.
|
|
// Accomplished by updating the timestamp.
|
|
|
|
void
|
|
ranger_cache::update_consumers (tree name)
|
|
{
|
|
m_temporal->set_timestamp (name);
|
|
}
|
|
|
|
// Set the global range of NAME to R and give it a timestamp.
|
|
|
|
void
|
|
ranger_cache::set_global_range (tree name, const vrange &r, bool changed)
|
|
{
|
|
// Setting a range always clears the always_current flag.
|
|
m_temporal->set_always_current (name, false);
|
|
if (!changed)
|
|
{
|
|
// If there are dependencies, make sure this is not out of date.
|
|
if (!m_temporal->current_p (name, gori_ssa ()->depend1 (name),
|
|
gori_ssa ()->depend2 (name)))
|
|
m_temporal->set_timestamp (name);
|
|
return;
|
|
}
|
|
if (m_globals.set_range (name, r))
|
|
{
|
|
// If there was already a range set, propagate the new value.
|
|
basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (name));
|
|
if (!bb)
|
|
bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, " GLOBAL :");
|
|
|
|
propagate_updated_value (name, bb);
|
|
}
|
|
// Constants no longer need to tracked. Any further refinement has to be
|
|
// undefined. Propagation works better with constants. PR 100512.
|
|
// Pointers which resolve to non-zero also do not need
|
|
// tracking in the cache as they will never change. See PR 98866.
|
|
// Timestamp must always be updated, or dependent calculations may
|
|
// not include this latest value. PR 100774.
|
|
|
|
if (r.singleton_p ()
|
|
|| (POINTER_TYPE_P (TREE_TYPE (name)) && r.nonzero_p ()))
|
|
gori_ssa ()->set_range_invariant (name);
|
|
m_temporal->set_timestamp (name);
|
|
}
|
|
|
|
// Provide lookup for the gori-computes class to access the best known range
|
|
// of an ssa_name in any given basic block. Note, this does no additional
|
|
// lookups, just accesses the data that is already known.
|
|
|
|
// Get the range of NAME when the def occurs in block BB. If BB is NULL
|
|
// get the best global value available.
|
|
|
|
void
|
|
ranger_cache::range_of_def (vrange &r, tree name, basic_block bb)
|
|
{
|
|
gcc_checking_assert (gimple_range_ssa_p (name));
|
|
gcc_checking_assert (!bb || bb == gimple_bb (SSA_NAME_DEF_STMT (name)));
|
|
|
|
// Pick up the best global range available.
|
|
if (!m_globals.get_range (r, name))
|
|
{
|
|
// If that fails, try to calculate the range using just global values.
|
|
gimple *s = SSA_NAME_DEF_STMT (name);
|
|
if (gimple_get_lhs (s) == name)
|
|
fold_range (r, s, get_global_range_query ());
|
|
else
|
|
gimple_range_global (r, name);
|
|
}
|
|
}
|
|
|
|
// Get the range of NAME as it occurs on entry to block BB. Use MODE for
|
|
// lookups.
|
|
|
|
void
|
|
ranger_cache::entry_range (vrange &r, tree name, basic_block bb,
|
|
enum rfd_mode mode)
|
|
{
|
|
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
|
{
|
|
gimple_range_global (r, name);
|
|
return;
|
|
}
|
|
|
|
// If NAME is invariant, simply return the defining range.
|
|
if (!gori ().has_edge_range_p (name))
|
|
{
|
|
range_of_def (r, name);
|
|
return;
|
|
}
|
|
|
|
// Look for the on-entry value of name in BB from the cache.
|
|
// Otherwise pick up the best available global value.
|
|
if (!m_on_entry.get_bb_range (r, name, bb))
|
|
if (!range_from_dom (r, name, bb, mode))
|
|
range_of_def (r, name);
|
|
}
|
|
|
|
// Get the range of NAME as it occurs on exit from block BB. Use MODE for
|
|
// lookups.
|
|
|
|
void
|
|
ranger_cache::exit_range (vrange &r, tree name, basic_block bb,
|
|
enum rfd_mode mode)
|
|
{
|
|
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
|
{
|
|
gimple_range_global (r, name);
|
|
return;
|
|
}
|
|
|
|
gimple *s = SSA_NAME_DEF_STMT (name);
|
|
basic_block def_bb = gimple_bb (s);
|
|
if (def_bb == bb)
|
|
range_of_def (r, name, bb);
|
|
else
|
|
entry_range (r, name, bb, mode);
|
|
}
|
|
|
|
// Get the range of NAME on edge E using MODE, return the result in R.
|
|
// Always returns a range and true.
|
|
|
|
bool
|
|
ranger_cache::edge_range (vrange &r, edge e, tree name, enum rfd_mode mode)
|
|
{
|
|
exit_range (r, name, e->src, mode);
|
|
// If this is not an abnormal edge, check for inferred ranges on exit.
|
|
if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
|
|
infer_oracle ().maybe_adjust_range (r, name, e->src);
|
|
value_range er (TREE_TYPE (name));
|
|
if (gori ().edge_range_p (er, e, name, *this))
|
|
r.intersect (er);
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
// Implement range_of_expr.
|
|
|
|
bool
|
|
ranger_cache::range_of_expr (vrange &r, tree name, gimple *stmt)
|
|
{
|
|
if (!gimple_range_ssa_p (name))
|
|
{
|
|
get_tree_range (r, name, stmt);
|
|
return true;
|
|
}
|
|
|
|
basic_block bb = gimple_bb (stmt);
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
|
|
basic_block def_bb = gimple_bb (def_stmt);
|
|
|
|
if (bb == def_bb)
|
|
range_of_def (r, name, bb);
|
|
else
|
|
entry_range (r, name, bb, RFD_NONE);
|
|
return true;
|
|
}
|
|
|
|
|
|
// Implement range_on_edge. Always return the best available range using
|
|
// the current cache values.
|
|
|
|
bool
|
|
ranger_cache::range_on_edge (vrange &r, edge e, tree expr)
|
|
{
|
|
if (gimple_range_ssa_p (expr))
|
|
return edge_range (r, e, expr, RFD_NONE);
|
|
return get_tree_range (r, expr, NULL);
|
|
}
|
|
|
|
// Return a static range for NAME on entry to basic block BB in R. If
|
|
// calc is true, fill any cache entries required between BB and the
|
|
// def block for NAME. Otherwise, return false if the cache is empty.
|
|
|
|
bool
|
|
ranger_cache::block_range (vrange &r, basic_block bb, tree name, bool calc)
|
|
{
|
|
gcc_checking_assert (gimple_range_ssa_p (name));
|
|
|
|
// If there are no range calculations anywhere in the IL, global range
|
|
// applies everywhere, so don't bother caching it.
|
|
if (!gori ().has_edge_range_p (name))
|
|
return false;
|
|
|
|
if (calc)
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
|
|
basic_block def_bb = NULL;
|
|
if (def_stmt)
|
|
def_bb = gimple_bb (def_stmt);
|
|
if (!def_bb)
|
|
{
|
|
// If we get to the entry block, this better be a default def
|
|
// or range_on_entry was called for a block not dominated by
|
|
// the def. But it could be also SSA_NAME defined by a statement
|
|
// not yet in the IL (such as queued edge insertion), in that case
|
|
// just punt.
|
|
if (!SSA_NAME_IS_DEFAULT_DEF (name))
|
|
return false;
|
|
def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
|
}
|
|
|
|
// There is no range on entry for the definition block.
|
|
if (def_bb == bb)
|
|
return false;
|
|
|
|
// Otherwise, go figure out what is known in predecessor blocks.
|
|
fill_block_cache (name, bb, def_bb);
|
|
gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
|
|
}
|
|
return m_on_entry.get_bb_range (r, name, bb);
|
|
}
|
|
|
|
// If there is anything in the propagation update_list, continue
|
|
// processing NAME until the list of blocks is empty.
|
|
|
|
void
|
|
ranger_cache::propagate_cache (tree name)
|
|
{
|
|
basic_block bb;
|
|
edge_iterator ei;
|
|
edge e;
|
|
tree type = TREE_TYPE (name);
|
|
value_range new_range (type);
|
|
value_range current_range (type);
|
|
value_range e_range (type);
|
|
|
|
// Process each block by seeing if its calculated range on entry is
|
|
// the same as its cached value. If there is a difference, update
|
|
// the cache to reflect the new value, and check to see if any
|
|
// successors have cache entries which may need to be checked for
|
|
// updates.
|
|
|
|
while (!m_update->empty_p ())
|
|
{
|
|
bb = m_update->pop ();
|
|
gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
|
|
m_on_entry.get_bb_range (current_range, name, bb);
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, "FWD visiting block %d for ", bb->index);
|
|
print_generic_expr (dump_file, name, TDF_SLIM);
|
|
fprintf (dump_file, " starting range : ");
|
|
current_range.dump (dump_file);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
// Calculate the "new" range on entry by unioning the pred edges.
|
|
new_range.set_undefined ();
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
edge_range (e_range, e, name, RFD_READ_ONLY);
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, " edge %d->%d :", e->src->index, bb->index);
|
|
e_range.dump (dump_file);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
new_range.union_ (e_range);
|
|
if (new_range.varying_p ())
|
|
break;
|
|
}
|
|
|
|
// If the range on entry has changed, update it.
|
|
if (new_range != current_range)
|
|
{
|
|
bool ok_p = m_on_entry.set_bb_range (name, bb, new_range);
|
|
// If the cache couldn't set the value, mark it as failed.
|
|
if (!ok_p)
|
|
m_update->propagation_failed (bb);
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
if (!ok_p)
|
|
{
|
|
fprintf (dump_file, " Cache failure to store value:");
|
|
print_generic_expr (dump_file, name, TDF_SLIM);
|
|
fprintf (dump_file, " ");
|
|
}
|
|
else
|
|
{
|
|
fprintf (dump_file, " Updating range to ");
|
|
new_range.dump (dump_file);
|
|
}
|
|
fprintf (dump_file, "\n Updating blocks :");
|
|
}
|
|
// Mark each successor that has a range to re-check its range
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if (m_on_entry.bb_range_p (name, e->dest))
|
|
{
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, " bb%d",e->dest->index);
|
|
m_update->add (e->dest);
|
|
}
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, "DONE visiting blocks for ");
|
|
print_generic_expr (dump_file, name, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
m_update->clear_failures ();
|
|
}
|
|
|
|
// Check to see if an update to the value for NAME in BB has any effect
|
|
// on values already in the on-entry cache for successor blocks.
|
|
// If it does, update them. Don't visit any blocks which don't have a cache
|
|
// entry.
|
|
|
|
void
|
|
ranger_cache::propagate_updated_value (tree name, basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
// The update work list should be empty at this point.
|
|
gcc_checking_assert (m_update->empty_p ());
|
|
gcc_checking_assert (bb);
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, " UPDATE cache for ");
|
|
print_generic_expr (dump_file, name, TDF_SLIM);
|
|
fprintf (dump_file, " in BB %d : successors : ", bb->index);
|
|
}
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
{
|
|
// Only update active cache entries.
|
|
if (m_on_entry.bb_range_p (name, e->dest))
|
|
{
|
|
m_update->add (e->dest);
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, " UPDATE: bb%d", e->dest->index);
|
|
}
|
|
}
|
|
if (!m_update->empty_p ())
|
|
{
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, "\n");
|
|
propagate_cache (name);
|
|
}
|
|
else
|
|
{
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, " : No updates!\n");
|
|
}
|
|
}
|
|
|
|
// Make sure that the range-on-entry cache for NAME is set for block BB.
|
|
// Work back through the CFG to DEF_BB ensuring the range is calculated
|
|
// on the block/edges leading back to that point.
|
|
|
|
void
|
|
ranger_cache::fill_block_cache (tree name, basic_block bb, basic_block def_bb)
|
|
{
|
|
edge_iterator ei;
|
|
edge e;
|
|
tree type = TREE_TYPE (name);
|
|
value_range block_result (type);
|
|
value_range undefined (type);
|
|
|
|
// At this point we shouldn't be looking at the def, entry block.
|
|
gcc_checking_assert (bb != def_bb && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
|
unsigned start_length = m_workback.length ();
|
|
|
|
// If the block cache is set, then we've already visited this block.
|
|
if (m_on_entry.bb_range_p (name, bb))
|
|
return;
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, "\n");
|
|
print_generic_expr (dump_file, name, TDF_SLIM);
|
|
fprintf (dump_file, " : ");
|
|
}
|
|
|
|
// Check if a dominators can supply the range.
|
|
if (range_from_dom (block_result, name, bb, RFD_FILL))
|
|
{
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, "Filled from dominator! : ");
|
|
block_result.dump (dump_file);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
// See if any equivalences can refine it.
|
|
// PR 109462, like 108139 below, a one way equivalence introduced
|
|
// by a PHI node can also be through the definition side. Disallow it.
|
|
tree equiv_name;
|
|
relation_kind rel;
|
|
int prec = TYPE_PRECISION (type);
|
|
// If there are too many basic blocks, do not attempt to process
|
|
// equivalencies.
|
|
if (last_basic_block_for_fn (cfun) > param_vrp_sparse_threshold)
|
|
{
|
|
m_on_entry.set_bb_range (name, bb, block_result);
|
|
gcc_checking_assert (m_workback.length () == start_length);
|
|
return;
|
|
}
|
|
FOR_EACH_PARTIAL_AND_FULL_EQUIV (m_relation, bb, name, equiv_name, rel)
|
|
{
|
|
basic_block equiv_bb = gimple_bb (SSA_NAME_DEF_STMT (equiv_name));
|
|
|
|
// Ignore partial equivs that are smaller than this object.
|
|
if (rel != VREL_EQ && prec > pe_to_bits (rel))
|
|
continue;
|
|
|
|
// Check if the equiv has any ranges calculated.
|
|
if (!gori ().has_edge_range_p (equiv_name))
|
|
continue;
|
|
|
|
// Check if the equiv definition dominates this block
|
|
if (equiv_bb == bb ||
|
|
(equiv_bb && !dominated_by_p (CDI_DOMINATORS, bb, equiv_bb)))
|
|
continue;
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
if (rel == VREL_EQ)
|
|
fprintf (dump_file, "Checking Equivalence (");
|
|
else
|
|
fprintf (dump_file, "Checking Partial equiv (");
|
|
print_relation (dump_file, rel);
|
|
fprintf (dump_file, ") ");
|
|
print_generic_expr (dump_file, equiv_name, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
value_range equiv_range (TREE_TYPE (equiv_name));
|
|
if (range_from_dom (equiv_range, equiv_name, bb, RFD_READ_ONLY))
|
|
{
|
|
if (rel != VREL_EQ)
|
|
range_cast (equiv_range, type);
|
|
else
|
|
adjust_equivalence_range (equiv_range);
|
|
|
|
if (block_result.intersect (equiv_range))
|
|
{
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
if (rel == VREL_EQ)
|
|
fprintf (dump_file, "Equivalence update! : ");
|
|
else
|
|
fprintf (dump_file, "Partial equiv update! : ");
|
|
print_generic_expr (dump_file, equiv_name, TDF_SLIM);
|
|
fprintf (dump_file, " has range : ");
|
|
equiv_range.dump (dump_file);
|
|
fprintf (dump_file, " refining range to :");
|
|
block_result.dump (dump_file);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
m_on_entry.set_bb_range (name, bb, block_result);
|
|
gcc_checking_assert (m_workback.length () == start_length);
|
|
return;
|
|
}
|
|
|
|
// Visit each block back to the DEF. Initialize each one to UNDEFINED.
|
|
// m_visited at the end will contain all the blocks that we needed to set
|
|
// the range_on_entry cache for.
|
|
m_workback.safe_push (bb);
|
|
undefined.set_undefined ();
|
|
m_on_entry.set_bb_range (name, bb, undefined);
|
|
gcc_checking_assert (m_update->empty_p ());
|
|
|
|
while (m_workback.length () > start_length)
|
|
{
|
|
basic_block node = m_workback.pop ();
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, "BACK visiting block %d for ", node->index);
|
|
print_generic_expr (dump_file, name, TDF_SLIM);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
FOR_EACH_EDGE (e, ei, node->preds)
|
|
{
|
|
basic_block pred = e->src;
|
|
value_range r (TREE_TYPE (name));
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, " %d->%d ",e->src->index, e->dest->index);
|
|
|
|
// If the pred block is the def block add this BB to update list.
|
|
if (pred == def_bb)
|
|
{
|
|
m_update->add (node);
|
|
continue;
|
|
}
|
|
|
|
// If the pred is entry but NOT def, then it is used before
|
|
// defined, it'll get set to [] and no need to update it.
|
|
if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
|
{
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, "entry: bail.");
|
|
continue;
|
|
}
|
|
|
|
// Regardless of whether we have visited pred or not, if the
|
|
// pred has inferred ranges, revisit this block.
|
|
// Don't search the DOM tree.
|
|
if (infer_oracle ().has_range_p (pred, name))
|
|
{
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, "Inferred range: update ");
|
|
m_update->add (node);
|
|
}
|
|
|
|
// If the pred block already has a range, or if it can contribute
|
|
// something new. Ie, the edge generates a range of some sort.
|
|
if (m_on_entry.get_bb_range (r, name, pred))
|
|
{
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, "has cache, ");
|
|
r.dump (dump_file);
|
|
fprintf (dump_file, ", ");
|
|
}
|
|
if (!r.undefined_p () || gori ().has_edge_range_p (name, e))
|
|
{
|
|
m_update->add (node);
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, "update. ");
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, "pushing undefined pred block.\n");
|
|
// If the pred hasn't been visited (has no range), add it to
|
|
// the list.
|
|
gcc_checking_assert (!m_on_entry.bb_range_p (name, pred));
|
|
m_on_entry.set_bb_range (name, pred, undefined);
|
|
m_workback.safe_push (pred);
|
|
}
|
|
}
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, "\n");
|
|
|
|
// Now fill in the marked blocks with values.
|
|
propagate_cache (name);
|
|
if (DEBUG_RANGE_CACHE)
|
|
fprintf (dump_file, " Propagation update done.\n");
|
|
}
|
|
|
|
// Resolve the range of BB if the dominators range is R by calculating incoming
|
|
// edges to this block. All lead back to the dominator so should be cheap.
|
|
// The range for BB is set and returned in R.
|
|
|
|
void
|
|
ranger_cache::resolve_dom (vrange &r, tree name, basic_block bb)
|
|
{
|
|
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
|
|
basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
|
|
|
|
// if it doesn't already have a value, store the incoming range.
|
|
if (!m_on_entry.bb_range_p (name, dom_bb) && def_bb != dom_bb)
|
|
{
|
|
// If the range can't be store, don't try to accumulate
|
|
// the range in PREV_BB due to excessive recalculations.
|
|
if (!m_on_entry.set_bb_range (name, dom_bb, r))
|
|
return;
|
|
}
|
|
// With the dominator set, we should be able to cheaply query
|
|
// each incoming edge now and accumulate the results.
|
|
r.set_undefined ();
|
|
edge e;
|
|
edge_iterator ei;
|
|
value_range er (TREE_TYPE (name));
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
|
{
|
|
// If the predecessor is dominated by this block, then there is a back
|
|
// edge, and won't provide anything useful. We'll actually end up with
|
|
// VARYING as we will not resolve this node.
|
|
if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
|
|
continue;
|
|
edge_range (er, e, name, RFD_READ_ONLY);
|
|
r.union_ (er);
|
|
}
|
|
// Set the cache in PREV_BB so it is not calculated again.
|
|
m_on_entry.set_bb_range (name, bb, r);
|
|
}
|
|
|
|
// Get the range of NAME from dominators of BB and return it in R. Search the
|
|
// dominator tree based on MODE.
|
|
|
|
bool
|
|
ranger_cache::range_from_dom (vrange &r, tree name, basic_block start_bb,
|
|
enum rfd_mode mode)
|
|
{
|
|
if (mode == RFD_NONE || !dom_info_available_p (CDI_DOMINATORS))
|
|
return false;
|
|
|
|
// Search back to the definition block or entry block.
|
|
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
|
|
if (def_bb == NULL)
|
|
def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
|
|
|
basic_block bb;
|
|
basic_block prev_bb = start_bb;
|
|
|
|
// Track any inferred ranges seen.
|
|
value_range infer (TREE_TYPE (name));
|
|
infer.set_varying (TREE_TYPE (name));
|
|
|
|
// Range on entry to the DEF block should not be queried.
|
|
gcc_checking_assert (start_bb != def_bb);
|
|
unsigned start_limit = m_workback.length ();
|
|
|
|
// Default value is global range.
|
|
get_global_range (r, name);
|
|
|
|
// The dominator of EXIT_BLOCK doesn't seem to be set, so at least handle
|
|
// the common single exit cases.
|
|
if (start_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) && single_pred_p (start_bb))
|
|
bb = single_pred_edge (start_bb)->src;
|
|
else
|
|
bb = get_immediate_dominator (CDI_DOMINATORS, start_bb);
|
|
|
|
// Search until a value is found, pushing blocks which may need calculating.
|
|
for ( ; bb; prev_bb = bb, bb = get_immediate_dominator (CDI_DOMINATORS, bb))
|
|
{
|
|
// Accumulate any block exit inferred ranges.
|
|
infer_oracle ().maybe_adjust_range (infer, name, bb);
|
|
|
|
// This block has an outgoing range.
|
|
if (gori ().has_edge_range_p (name, bb))
|
|
m_workback.safe_push (prev_bb);
|
|
else
|
|
{
|
|
// Normally join blocks don't carry any new range information on
|
|
// incoming edges. If the first incoming edge to this block does
|
|
// generate a range, calculate the ranges if all incoming edges
|
|
// are also dominated by the dominator. (Avoids backedges which
|
|
// will break the rule of moving only upward in the dominator tree).
|
|
// If the first pred does not generate a range, then we will be
|
|
// using the dominator range anyway, so that's all the check needed.
|
|
if (EDGE_COUNT (prev_bb->preds) > 1
|
|
&& gori ().has_edge_range_p (name, EDGE_PRED (prev_bb, 0)->src))
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
bool all_dom = true;
|
|
FOR_EACH_EDGE (e, ei, prev_bb->preds)
|
|
if (e->src != bb
|
|
&& !dominated_by_p (CDI_DOMINATORS, e->src, bb))
|
|
{
|
|
all_dom = false;
|
|
break;
|
|
}
|
|
if (all_dom)
|
|
m_workback.safe_push (prev_bb);
|
|
}
|
|
}
|
|
|
|
if (def_bb == bb)
|
|
break;
|
|
|
|
if (m_on_entry.get_bb_range (r, name, bb))
|
|
break;
|
|
}
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, "CACHE: BB %d DOM query for ", start_bb->index);
|
|
print_generic_expr (dump_file, name, TDF_SLIM);
|
|
fprintf (dump_file, ", found ");
|
|
r.dump (dump_file);
|
|
if (bb)
|
|
fprintf (dump_file, " at BB%d\n", bb->index);
|
|
else
|
|
fprintf (dump_file, " at function top\n");
|
|
}
|
|
|
|
// Now process any blocks wit incoming edges that nay have adjustments.
|
|
while (m_workback.length () > start_limit)
|
|
{
|
|
value_range er (TREE_TYPE (name));
|
|
prev_bb = m_workback.pop ();
|
|
if (!single_pred_p (prev_bb))
|
|
{
|
|
// Non single pred means we need to cache a value in the dominator
|
|
// so we can cheaply calculate incoming edges to this block, and
|
|
// then store the resulting value. If processing mode is not
|
|
// RFD_FILL, then the cache cant be stored to, so don't try.
|
|
// Otherwise this becomes a quadratic timed calculation.
|
|
if (mode == RFD_FILL)
|
|
resolve_dom (r, name, prev_bb);
|
|
continue;
|
|
}
|
|
|
|
edge e = single_pred_edge (prev_bb);
|
|
bb = e->src;
|
|
if (gori ().edge_range_p (er, e, name, *this))
|
|
{
|
|
r.intersect (er);
|
|
// If this is a normal edge, apply any inferred ranges.
|
|
if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
|
|
infer_oracle ().maybe_adjust_range (r, name, bb);
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, "CACHE: Adjusted edge range for %d->%d : ",
|
|
bb->index, prev_bb->index);
|
|
r.dump (dump_file);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Apply non-null if appropriate.
|
|
if (!has_abnormal_call_or_eh_pred_edge_p (start_bb))
|
|
r.intersect (infer);
|
|
|
|
if (DEBUG_RANGE_CACHE)
|
|
{
|
|
fprintf (dump_file, "CACHE: Range for DOM returns : ");
|
|
r.dump (dump_file);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// This routine will register an inferred value in block BB, and possibly
|
|
// update the on-entry cache if appropriate.
|
|
|
|
void
|
|
ranger_cache::register_inferred_value (const vrange &ir, tree name,
|
|
basic_block bb)
|
|
{
|
|
value_range r (TREE_TYPE (name));
|
|
if (!m_on_entry.get_bb_range (r, name, bb))
|
|
exit_range (r, name, bb, RFD_READ_ONLY);
|
|
if (r.intersect (ir))
|
|
{
|
|
m_on_entry.set_bb_range (name, bb, r);
|
|
// If this range was invariant before, remove invariant.
|
|
if (!gori ().has_edge_range_p (name))
|
|
gori_ssa ()->set_range_invariant (name, false);
|
|
}
|
|
}
|
|
|
|
// This routine is used during a block walk to adjust any inferred ranges
|
|
// of operands on stmt S.
|
|
|
|
void
|
|
ranger_cache::apply_inferred_ranges (gimple *s)
|
|
{
|
|
bool update = true;
|
|
|
|
basic_block bb = gimple_bb (s);
|
|
gimple_infer_range infer(s, this);
|
|
if (infer.num () == 0)
|
|
return;
|
|
|
|
// Do not update the on-entry cache for block ending stmts.
|
|
if (stmt_ends_bb_p (s))
|
|
{
|
|
edge_iterator ei;
|
|
edge e;
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (s)->succs)
|
|
if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
|
|
break;
|
|
if (e == NULL)
|
|
update = false;
|
|
}
|
|
|
|
infer_oracle ().add_ranges (s, infer);
|
|
if (update)
|
|
for (unsigned x = 0; x < infer.num (); x++)
|
|
register_inferred_value (infer.range (x), infer.name (x), bb);
|
|
}
|