mirror of
https://forge.sourceware.org/marek/gcc.git
synced 2026-02-21 19:35:36 -05:00
988 lines
27 KiB
C++
988 lines
27 KiB
C++
/* Generate code from machine description to emit insns as rtl.
|
||
Copyright (C) 1987-2026 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
|
||
#include "bconfig.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "errors.h"
|
||
#include "read-md.h"
|
||
#include "gensupport.h"
|
||
|
||
|
||
/* Data structure for recording the patterns of insns that have CLOBBERs.
|
||
We use this to output a function that adds these CLOBBERs to a
|
||
previously-allocated PARALLEL expression. */
|
||
|
||
struct clobber_pat
|
||
{
|
||
struct clobber_ent *insns;
|
||
rtvec pattern;
|
||
int first_clobber;
|
||
struct clobber_pat *next;
|
||
int has_hard_reg;
|
||
} *clobber_list;
|
||
|
||
/* Records one insn that uses the clobber list. */
|
||
|
||
struct clobber_ent
|
||
{
|
||
int code_number; /* Counts only insns. */
|
||
struct clobber_ent *next;
|
||
};
|
||
|
||
static void output_peephole2_scratches (rtx, FILE*);
|
||
|
||
/* True for <X>_optab if that optab isn't allowed to fail. */
|
||
static bool nofail_optabs[NUM_OPTABS];
|
||
|
||
/* A list of the md constructs that need a gen_* function. */
|
||
static vec<md_rtx_info> queue;
|
||
|
||
unsigned FIRST_CODE = (unsigned) expand_opcode::FIRST_CODE;
|
||
|
||
/* A structure used to generate code for a particular expansion. */
|
||
struct generator
|
||
{
|
||
generator (const md_rtx_info &info) : info (info) {}
|
||
|
||
void add_uint (uint64_t);
|
||
void add_opcode (expand_opcode opcode) { add_uint ((unsigned) opcode); }
|
||
void add_code (rtx_code code) { add_uint (FIRST_CODE + (unsigned) code); }
|
||
void add_match_operator (machine_mode, int, rtvec);
|
||
void add_exp (rtx);
|
||
void add_vec (rtvec);
|
||
|
||
const char *gen_table (FILE *, const char *);
|
||
const char *gen_exp (FILE *, rtx);
|
||
const char *gen_emit_seq (FILE *, rtvec);
|
||
|
||
/* The construct that we're expanding. */
|
||
const md_rtx_info info;
|
||
|
||
/* Used to build up the encoding of the expanded rtx sequence. */
|
||
auto_vec<uint8_t> bytes;
|
||
};
|
||
|
||
/* Add VALUE to the encoding using "BEB128" (big-endian version of LEB128).
|
||
This is slightly easier for the consumer. */
|
||
|
||
void
|
||
generator::add_uint (uint64_t value)
|
||
{
|
||
int shift = 0;
|
||
while ((value >> shift >> 7) > 0)
|
||
shift += 7;
|
||
do
|
||
{
|
||
bytes.safe_push (((value >> shift) & 127) | (shift > 0 ? 128 : 0));
|
||
shift -= 7;
|
||
}
|
||
while (shift >= 0);
|
||
}
|
||
|
||
/* Add the rtx expansion of a MATCH_OPERATOR or MATCH_OP_DUP. OPNO is the
|
||
number of the matched operand. MODE is the mode that the rtx should have,
|
||
or NUM_MACHINE_MODES if the operand's original mode should be retained.
|
||
VEC is the vector of suboperands, which replace those of the original
|
||
operand. */
|
||
|
||
void
|
||
generator::add_match_operator (machine_mode mode, int opno, rtvec vec)
|
||
{
|
||
if (mode != NUM_MACHINE_MODES)
|
||
{
|
||
add_opcode (expand_opcode::MATCH_OPERATOR_WITH_MODE);
|
||
add_uint (mode);
|
||
}
|
||
else
|
||
add_opcode (expand_opcode::MATCH_OPERATOR);
|
||
add_uint (opno);
|
||
for (int i = 0; i < GET_NUM_ELEM (vec); i++)
|
||
add_exp (RTVEC_ELT (vec, i));
|
||
}
|
||
|
||
/* Add the expansion of X to the encoding. */
|
||
|
||
void
|
||
generator::add_exp (rtx x)
|
||
{
|
||
if (x == 0)
|
||
{
|
||
add_opcode (expand_opcode::NO_RTX);
|
||
return;
|
||
}
|
||
|
||
auto code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case MATCH_OPERAND:
|
||
case MATCH_DUP:
|
||
add_opcode (expand_opcode::MATCH_OPERAND);
|
||
add_uint (XINT (x, 0));
|
||
return;
|
||
|
||
case MATCH_OP_DUP:
|
||
if (GET_MODE (x) == VOIDmode)
|
||
add_match_operator (NUM_MACHINE_MODES, XINT (x, 0), XVEC (x, 1));
|
||
else
|
||
add_match_operator (GET_MODE (x), XINT (x, 0), XVEC (x, 1));
|
||
return;
|
||
|
||
case MATCH_OPERATOR:
|
||
add_match_operator (GET_MODE (x), XINT (x, 0), XVEC (x, 2));
|
||
return;
|
||
|
||
case MATCH_PARALLEL:
|
||
case MATCH_PAR_DUP:
|
||
add_opcode (expand_opcode::MATCH_PARALLEL);
|
||
add_uint (XINT (x, 0));
|
||
return;
|
||
|
||
case MATCH_SCRATCH:
|
||
add_code (SCRATCH);
|
||
add_uint (GET_MODE (x));
|
||
return;
|
||
|
||
case CLOBBER:
|
||
if (REG_P (XEXP (x, 0)))
|
||
{
|
||
add_opcode (expand_opcode::CLOBBER_REG);
|
||
add_uint (GET_MODE (XEXP (x, 0)));
|
||
add_uint (REGNO (XEXP (x, 0)));
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case CONST_INT:
|
||
add_code (CONST_INT);
|
||
add_uint (UINTVAL (x));
|
||
return;
|
||
|
||
case CONST_DOUBLE:
|
||
/* Handle `const_double_zero' rtx. */
|
||
if (CONST_DOUBLE_REAL_VALUE (x)->cl == rvc_zero)
|
||
{
|
||
add_code (CONST_DOUBLE);
|
||
add_uint (GET_MODE (x));
|
||
return;
|
||
}
|
||
/* Fall through. */
|
||
case CONST_FIXED:
|
||
case CONST_WIDE_INT:
|
||
/* These shouldn't be written in MD files. Instead, the appropriate
|
||
routines in varasm.cc should be called. */
|
||
gcc_unreachable ();
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
add_code (code);
|
||
if (!always_void_p (code))
|
||
add_uint (GET_MODE (x));
|
||
|
||
auto fmt = GET_RTX_FORMAT (code);
|
||
unsigned int len = GET_RTX_LENGTH (code);
|
||
for (unsigned int i = 0; i < len; i++)
|
||
{
|
||
if (fmt[i] == '0')
|
||
break;
|
||
switch (fmt[i])
|
||
{
|
||
case 'e': case 'u':
|
||
add_exp (XEXP (x, i));
|
||
break;
|
||
|
||
case 'i':
|
||
add_uint (XUINT (x, i));
|
||
break;
|
||
|
||
case 'L':
|
||
case 's':
|
||
fatal_at (info.loc, "'%s' rtxes are not supported in this context",
|
||
GET_RTX_NAME (code));
|
||
break;
|
||
|
||
case 'r':
|
||
add_uint (REGNO (x));
|
||
break;
|
||
|
||
case 'p':
|
||
/* We don't have a way of parsing polynomial offsets yet,
|
||
and hopefully never will. */
|
||
add_uint (SUBREG_BYTE (x).to_constant ());
|
||
break;
|
||
|
||
case 'E':
|
||
add_vec (XVEC (x, i));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add the expansion of rtx vector VEC to the encoding. */
|
||
|
||
void
|
||
generator::add_vec (rtvec vec)
|
||
{
|
||
add_uint (GET_NUM_ELEM (vec));
|
||
for (int i = 0; i < GET_NUM_ELEM (vec); ++i)
|
||
add_exp (RTVEC_ELT (vec, i));
|
||
}
|
||
|
||
/* Emit the encoding as a static C++ array called NAME. Return NAME. */
|
||
|
||
const char *
|
||
generator::gen_table (FILE *file, const char *name)
|
||
{
|
||
fprintf (file, " static const uint8_t %s[] = {", name);
|
||
for (size_t i = 0; i < bytes.length (); ++i)
|
||
fprintf (file, "%s%s 0x%02x",
|
||
i == 0 ? "" : ",",
|
||
i % 8 == 0 ? "\n " : "",
|
||
bytes[i]);
|
||
fprintf (file, "\n };\n");
|
||
return name;
|
||
}
|
||
|
||
/* Output the code necessary for generating rtx X and return the name
|
||
of the C++ array that contains the encoding. */
|
||
|
||
const char *
|
||
generator::gen_exp (FILE *file, rtx x)
|
||
{
|
||
add_exp (x);
|
||
return gen_table (file, "expand_encoding");
|
||
}
|
||
|
||
/* Output the code necessary for emitting each element of VEC as a separate
|
||
instruction. Return the name of the C++ array that contains the
|
||
encoding. */
|
||
|
||
const char *
|
||
generator::gen_emit_seq (FILE *file, rtvec vec)
|
||
{
|
||
add_vec (vec);
|
||
return gen_table (file, "expand_encoding");
|
||
}
|
||
|
||
/* Emit the given C code to the output file. The code is allowed to
|
||
fail if CAN_FAIL_P. NAME describes what we're generating,
|
||
for use in error messages. */
|
||
|
||
static void
|
||
emit_c_code (const char *code, bool can_fail_p, const char *name, FILE *file)
|
||
{
|
||
if (can_fail_p)
|
||
fprintf (file, "#define FAIL return (end_sequence (), nullptr)\n");
|
||
else
|
||
fprintf (file, "#define FAIL _Pragma (\"GCC error \\\"%s cannot FAIL\\\"\")"
|
||
" (void)0\n", name);
|
||
fprintf (file, "#define DONE return end_sequence ()\n");
|
||
|
||
rtx_reader_ptr->print_md_ptr_loc (code, file);
|
||
fprintf (file, "%s\n", code);
|
||
|
||
fprintf (file, "#undef DONE\n");
|
||
fprintf (file, "#undef FAIL\n");
|
||
}
|
||
|
||
/* Process the DEFINE_INSN in LOC, and queue it if it needs a gen_*
|
||
function. */
|
||
|
||
static void
|
||
maybe_queue_insn (const md_rtx_info &info)
|
||
{
|
||
/* See if the pattern for this insn ends with a group of CLOBBERs of (hard)
|
||
registers or MATCH_SCRATCHes. If so, store away the information for
|
||
later. */
|
||
|
||
rtx insn = info.def;
|
||
if (XVEC (insn, 1))
|
||
{
|
||
int has_hard_reg = 0;
|
||
rtvec pattern = XVEC (insn, 1);
|
||
|
||
/* Look though an explicit parallel. */
|
||
if (GET_NUM_ELEM (pattern) == 1
|
||
&& GET_CODE (RTVEC_ELT (pattern, 0)) == PARALLEL)
|
||
pattern = XVEC (RTVEC_ELT (pattern, 0), 0);
|
||
|
||
int i;
|
||
for (i = GET_NUM_ELEM (pattern) - 1; i > 0; i--)
|
||
{
|
||
if (GET_CODE (RTVEC_ELT (pattern, i)) != CLOBBER)
|
||
break;
|
||
|
||
if (REG_P (XEXP (RTVEC_ELT (pattern, i), 0)))
|
||
has_hard_reg = 1;
|
||
else if (GET_CODE (XEXP (RTVEC_ELT (pattern, i), 0)) != MATCH_SCRATCH)
|
||
break;
|
||
}
|
||
|
||
if (i != GET_NUM_ELEM (pattern) - 1)
|
||
{
|
||
struct clobber_pat *p;
|
||
struct clobber_ent *link = XNEW (struct clobber_ent);
|
||
int j;
|
||
|
||
link->code_number = info.index;
|
||
|
||
/* See if any previous CLOBBER_LIST entry is the same as this
|
||
one. */
|
||
|
||
for (p = clobber_list; p; p = p->next)
|
||
{
|
||
if (p->first_clobber != i + 1
|
||
|| GET_NUM_ELEM (p->pattern) != GET_NUM_ELEM (pattern))
|
||
continue;
|
||
|
||
for (j = i + 1; j < GET_NUM_ELEM (pattern); j++)
|
||
{
|
||
rtx old_rtx = XEXP (RTVEC_ELT (p->pattern, j), 0);
|
||
rtx new_rtx = XEXP (RTVEC_ELT (pattern, j), 0);
|
||
|
||
/* OLD and NEW_INSN are the same if both are to be a SCRATCH
|
||
of the same mode,
|
||
or if both are registers of the same mode and number. */
|
||
if (! (GET_CODE (old_rtx) == GET_CODE (new_rtx)
|
||
&& GET_MODE (old_rtx) == GET_MODE (new_rtx)
|
||
&& ((GET_CODE (old_rtx) == MATCH_SCRATCH
|
||
&& GET_CODE (new_rtx) == MATCH_SCRATCH)
|
||
|| (REG_P (old_rtx) && REG_P (new_rtx)
|
||
&& REGNO (old_rtx) == REGNO (new_rtx)))))
|
||
break;
|
||
}
|
||
|
||
if (j == GET_NUM_ELEM (pattern))
|
||
break;
|
||
}
|
||
|
||
if (p == 0)
|
||
{
|
||
p = XNEW (struct clobber_pat);
|
||
|
||
p->insns = 0;
|
||
p->pattern = pattern;
|
||
p->first_clobber = i + 1;
|
||
p->next = clobber_list;
|
||
p->has_hard_reg = has_hard_reg;
|
||
clobber_list = p;
|
||
}
|
||
|
||
link->next = p->insns;
|
||
p->insns = link;
|
||
}
|
||
}
|
||
|
||
/* Don't mention instructions whose names are the null string
|
||
or begin with '*'. They are in the machine description just
|
||
to be recognized. */
|
||
if (XSTR (insn, 0)[0] == 0 || XSTR (insn, 0)[0] == '*')
|
||
return;
|
||
|
||
queue.safe_push (info);
|
||
}
|
||
|
||
/* Output the function name, argument declarations, and initial function
|
||
body for a pattern called NAME, given that it has the properties
|
||
in STATS. Return the C++ expression for the operands array. */
|
||
|
||
static const char *
|
||
start_gen_insn (FILE *file, const char *name, const pattern_stats &stats)
|
||
{
|
||
fprintf (file, "rtx\ngen_%s (", name);
|
||
if (stats.num_generator_args)
|
||
for (int i = 0; i < stats.num_generator_args; i++)
|
||
fprintf (file, "%sconst rtx operand%d", i == 0 ? "" : ", ", i);
|
||
else
|
||
fprintf (file, "void");
|
||
fprintf (file, ")\n");
|
||
fprintf (file, "{\n");
|
||
if (stats.num_generator_args)
|
||
{
|
||
fprintf (file, " rtx operands[%d] ATTRIBUTE_UNUSED = {",
|
||
stats.num_operand_vars);
|
||
for (int i = 0; i < stats.num_generator_args; i++)
|
||
fprintf (file, "%s operand%d", i == 0 ? "" : ",", i);
|
||
fprintf (file, " };\n");
|
||
return "operands";
|
||
}
|
||
|
||
if (stats.num_operand_vars != 0)
|
||
{
|
||
fprintf (file, " rtx operands[%d] ATTRIBUTE_UNUSED;\n",
|
||
stats.num_operand_vars);
|
||
return "operands";
|
||
}
|
||
|
||
return "nullptr";
|
||
}
|
||
|
||
/* Generate the `gen_...' function for a DEFINE_INSN. */
|
||
|
||
static void
|
||
gen_insn (const md_rtx_info &info, FILE *file)
|
||
{
|
||
struct pattern_stats stats;
|
||
|
||
/* Find out how many operands this function has. */
|
||
rtx insn = info.def;
|
||
get_pattern_stats (&stats, XVEC (insn, 1));
|
||
if (stats.max_dup_opno > stats.max_opno)
|
||
fatal_at (info.loc, "match_dup operand number has no match_operand");
|
||
|
||
/* Output the function name and argument declarations. */
|
||
const char *operands = start_gen_insn (file, XSTR (insn, 0), stats);
|
||
|
||
/* Output code to construct and return the rtl for the instruction body. */
|
||
|
||
rtx pattern = add_implicit_parallel (XVEC (insn, 1));
|
||
const char *table = generator (info).gen_exp (file, pattern);
|
||
fprintf (file, " return expand_rtx (%s, %s);\n}\n\n", table, operands);
|
||
}
|
||
|
||
/* Process and queue the DEFINE_EXPAND in INFO. */
|
||
|
||
static void
|
||
queue_expand (const md_rtx_info &info)
|
||
{
|
||
rtx expand = info.def;
|
||
if (strlen (XSTR (expand, 0)) == 0)
|
||
fatal_at (info.loc, "define_expand lacks a name");
|
||
if (XVEC (expand, 1) == 0)
|
||
fatal_at (info.loc, "define_expand for %s lacks a pattern",
|
||
XSTR (expand, 0));
|
||
queue.safe_push (info);
|
||
}
|
||
|
||
/* Generate the `gen_...' function for a DEFINE_EXPAND. */
|
||
|
||
static void
|
||
gen_expand (const md_rtx_info &info, FILE *file)
|
||
{
|
||
struct pattern_stats stats;
|
||
|
||
/* Find out how many operands this function has. */
|
||
rtx expand = info.def;
|
||
get_pattern_stats (&stats, XVEC (expand, 1));
|
||
if (stats.min_scratch_opno != -1
|
||
&& stats.min_scratch_opno <= MAX (stats.max_opno, stats.max_dup_opno))
|
||
fatal_at (info.loc, "define_expand for %s needs to have match_scratch "
|
||
"numbers above all other operands", XSTR (expand, 0));
|
||
|
||
/* Output the function name and argument declarations. */
|
||
const char *operands = start_gen_insn (file, XSTR (expand, 0), stats);
|
||
|
||
/* If we don't have any C code to write, only one insn is being written,
|
||
and no MATCH_DUPs are present, we can just return the desired insn
|
||
like we do for a DEFINE_INSN. This saves memory. */
|
||
if ((XSTR (expand, 3) == 0 || *XSTR (expand, 3) == '\0')
|
||
&& stats.max_opno >= stats.max_dup_opno
|
||
&& XVECLEN (expand, 1) == 1)
|
||
{
|
||
rtx pattern = XVECEXP (expand, 1, 0);
|
||
const char *table = generator (info).gen_exp (file, pattern);
|
||
fprintf (file, " return expand_rtx (%s, %s);\n}\n\n", table, operands);
|
||
return;
|
||
}
|
||
|
||
fprintf (file, " start_sequence ();\n");
|
||
|
||
/* The fourth operand of DEFINE_EXPAND is some code to be executed
|
||
before the actual construction.
|
||
This code expects to refer to `operands'
|
||
just as the output-code in a DEFINE_INSN does,
|
||
but here `operands' is an automatic array.
|
||
So copy the operand values there before executing it. */
|
||
if (XSTR (expand, 3) && *XSTR (expand, 3))
|
||
{
|
||
fprintf (file, " {\n");
|
||
|
||
/* Output the special code to be executed before the sequence
|
||
is generated. */
|
||
optab_pattern p;
|
||
bool can_fail_p = true;
|
||
if (find_optab (&p, XSTR (expand, 0)))
|
||
{
|
||
gcc_assert (p.op < NUM_OPTABS);
|
||
if (nofail_optabs[p.op])
|
||
can_fail_p = false;
|
||
}
|
||
emit_c_code (XSTR (expand, 3), can_fail_p, XSTR (expand, 0), file);
|
||
|
||
fprintf (file, " }\n");
|
||
}
|
||
|
||
const char *table = generator (info).gen_emit_seq (file, XVEC (expand, 1));
|
||
fprintf (file, " return complete_seq (%s, %s);\n}\n\n", table, operands);
|
||
}
|
||
|
||
/* Process and queue the DEFINE_SPLIT or DEFINE_PEEPHOLE2 in INFO. */
|
||
|
||
static void
|
||
queue_split (const md_rtx_info &info)
|
||
{
|
||
rtx split = info.def;
|
||
|
||
if (XVEC (split, 0) == 0)
|
||
fatal_at (info.loc, "%s lacks a pattern",
|
||
GET_RTX_NAME (GET_CODE (split)));
|
||
if (XVEC (split, 2) == 0)
|
||
fatal_at (info.loc, "%s lacks a replacement pattern",
|
||
GET_RTX_NAME (GET_CODE (split)));
|
||
|
||
queue.safe_push (info);
|
||
}
|
||
|
||
/* Generate the `gen_...' function for a DEFINE_SPLIT or DEFINE_PEEPHOLE2. */
|
||
|
||
static void
|
||
gen_split (const md_rtx_info &info, FILE *file)
|
||
{
|
||
struct pattern_stats stats;
|
||
rtx split = info.def;
|
||
const char *const name =
|
||
((GET_CODE (split) == DEFINE_PEEPHOLE2) ? "peephole2" : "split");
|
||
const char *unused;
|
||
|
||
/* Find out how many operands this function has. */
|
||
|
||
get_pattern_stats (&stats, XVEC (split, 2));
|
||
unused = (stats.num_operand_vars == 0 ? " ATTRIBUTE_UNUSED" : "");
|
||
|
||
/* Output the prototype, function name and argument declarations. */
|
||
if (GET_CODE (split) == DEFINE_PEEPHOLE2)
|
||
{
|
||
fprintf (file, "extern rtx_insn *gen_%s_%d (rtx_insn *, rtx *);\n",
|
||
name, info.index);
|
||
fprintf (file, "rtx_insn *\ngen_%s_%d (rtx_insn *curr_insn ATTRIBUTE_UNUSED,"
|
||
" rtx *operands%s)\n",
|
||
name, info.index, unused);
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
|
||
info.index);
|
||
fprintf (file, "rtx_insn *\ngen_split_%d "
|
||
"(rtx_insn *curr_insn ATTRIBUTE_UNUSED, rtx *operands%s)\n",
|
||
info.index, unused);
|
||
}
|
||
fprintf (file, "{\n");
|
||
|
||
if (GET_CODE (split) == DEFINE_PEEPHOLE2)
|
||
output_peephole2_scratches (split, file);
|
||
|
||
const char *fn = info.loc.filename;
|
||
for (const char *p = fn; *p; p++)
|
||
if (*p == '/')
|
||
fn = p + 1;
|
||
|
||
fprintf (file, " if (dump_file)\n");
|
||
fprintf (file, " fprintf (dump_file, \"Splitting with gen_%s_%d (%s:%d)\\n\");\n",
|
||
name, info.index, fn, info.loc.lineno);
|
||
|
||
fprintf (file, " start_sequence ();\n");
|
||
|
||
/* The fourth operand of DEFINE_SPLIT is some code to be executed
|
||
before the actual construction. */
|
||
|
||
if (XSTR (split, 3))
|
||
emit_c_code (XSTR (split, 3), true, name, file);
|
||
|
||
const char *table = generator (info).gen_emit_seq (file, XVEC (split, 2));
|
||
fprintf (file, " return complete_seq (%s, %s);\n}\n\n", table, "operands");
|
||
}
|
||
|
||
/* Write a function, `add_clobbers', that is given a PARALLEL of sufficient
|
||
size for the insn and an INSN_CODE, and inserts the required CLOBBERs at
|
||
the end of the vector. */
|
||
|
||
static void
|
||
output_add_clobbers (FILE *file)
|
||
{
|
||
struct clobber_pat *clobber;
|
||
struct clobber_ent *ent;
|
||
int i;
|
||
|
||
fprintf (file, "\n\nvoid\nadd_clobbers (rtx pattern ATTRIBUTE_UNUSED, int insn_code_number)\n");
|
||
fprintf (file, "{\n");
|
||
fprintf (file, " switch (insn_code_number)\n");
|
||
fprintf (file, " {\n");
|
||
|
||
for (clobber = clobber_list; clobber; clobber = clobber->next)
|
||
{
|
||
for (ent = clobber->insns; ent; ent = ent->next)
|
||
fprintf (file, " case %d:\n", ent->code_number);
|
||
|
||
for (i = clobber->first_clobber; i < GET_NUM_ELEM (clobber->pattern); i++)
|
||
{
|
||
fprintf (file, " XVECEXP (pattern, 0, %d) ="
|
||
" gen_rtx_CLOBBER (VOIDmode, ", i);
|
||
rtx x = XEXP (RTVEC_ELT (clobber->pattern, i), 0);
|
||
if (REG_P (x))
|
||
fprintf (file, "gen_rtx_REG (%smode, %d)",
|
||
GET_MODE_NAME (GET_MODE (x)), REGNO (x));
|
||
else
|
||
fprintf (file, "gen_rtx_SCRATCH (%smode)",
|
||
GET_MODE_NAME (GET_MODE (x)));
|
||
fprintf (file, ");\n");
|
||
}
|
||
|
||
fprintf (file, " break;\n\n");
|
||
}
|
||
|
||
fprintf (file, " default:\n");
|
||
fprintf (file, " gcc_unreachable ();\n");
|
||
fprintf (file, " }\n");
|
||
fprintf (file, "}\n");
|
||
}
|
||
|
||
/* Write a function, `added_clobbers_hard_reg_p' that is given an insn_code
|
||
number that will have clobbers added (as indicated by `recog') and returns
|
||
1 if those include a clobber of a hard reg or 0 if all of them just clobber
|
||
SCRATCH. */
|
||
|
||
static void
|
||
output_added_clobbers_hard_reg_p (FILE *file)
|
||
{
|
||
struct clobber_pat *clobber;
|
||
struct clobber_ent *ent;
|
||
int clobber_p;
|
||
bool used;
|
||
|
||
fprintf (file, "\n\nbool\nadded_clobbers_hard_reg_p (int insn_code_number)\n");
|
||
fprintf (file, "{\n");
|
||
fprintf (file, " switch (insn_code_number)\n");
|
||
fprintf (file, " {\n");
|
||
|
||
for (clobber_p = 0; clobber_p <= 1; clobber_p++)
|
||
{
|
||
used = false;
|
||
for (clobber = clobber_list; clobber; clobber = clobber->next)
|
||
if (clobber->has_hard_reg == clobber_p)
|
||
for (ent = clobber->insns; ent; ent = ent->next)
|
||
{
|
||
fprintf (file, " case %d:\n", ent->code_number);
|
||
used = true;
|
||
}
|
||
|
||
if (used)
|
||
fprintf (file, " return %s;\n\n", clobber_p ? "true" : "false");
|
||
}
|
||
|
||
fprintf (file, " default:\n");
|
||
fprintf (file, " gcc_unreachable ();\n");
|
||
fprintf (file, " }\n");
|
||
fprintf (file, "}\n");
|
||
}
|
||
|
||
/* Generate code to invoke find_free_register () as needed for the
|
||
scratch registers used by the peephole2 pattern in SPLIT. */
|
||
|
||
static void
|
||
output_peephole2_scratches (rtx split, FILE *file)
|
||
{
|
||
int i;
|
||
int insn_nr = 0;
|
||
bool first = true;
|
||
|
||
for (i = 0; i < XVECLEN (split, 0); i++)
|
||
{
|
||
rtx elt = XVECEXP (split, 0, i);
|
||
if (GET_CODE (elt) == MATCH_SCRATCH)
|
||
{
|
||
int last_insn_nr = insn_nr;
|
||
int cur_insn_nr = insn_nr;
|
||
int j;
|
||
for (j = i + 1; j < XVECLEN (split, 0); j++)
|
||
if (GET_CODE (XVECEXP (split, 0, j)) == MATCH_DUP)
|
||
{
|
||
if (XINT (XVECEXP (split, 0, j), 0) == XINT (elt, 0))
|
||
last_insn_nr = cur_insn_nr;
|
||
}
|
||
else if (GET_CODE (XVECEXP (split, 0, j)) != MATCH_SCRATCH)
|
||
cur_insn_nr++;
|
||
|
||
if (first)
|
||
{
|
||
fprintf (file, " HARD_REG_SET _regs_allocated;\n");
|
||
fprintf (file, " CLEAR_HARD_REG_SET (_regs_allocated);\n");
|
||
first = false;
|
||
}
|
||
|
||
fprintf (file, " if ((operands[%d] = peep2_find_free_register (%d, %d, \"%s\", %smode, &_regs_allocated)) == NULL_RTX)\n\
|
||
return NULL;\n",
|
||
XINT (elt, 0),
|
||
insn_nr, last_insn_nr,
|
||
XSTR (elt, 1),
|
||
GET_MODE_NAME (GET_MODE (elt)));
|
||
|
||
}
|
||
else if (GET_CODE (elt) != MATCH_DUP)
|
||
insn_nr++;
|
||
}
|
||
}
|
||
|
||
/* Print "arg<N>" parameter declarations for each argument N of ONAME. */
|
||
|
||
static void
|
||
print_overload_arguments (overloaded_name *oname, FILE *file)
|
||
{
|
||
for (unsigned int i = 0; i < oname->arg_types.length (); ++i)
|
||
fprintf (file, "%s%s arg%d", i == 0 ? "" : ", ", oname->arg_types[i], i);
|
||
}
|
||
|
||
/* Print code to test whether INSTANCE should be chosen, given that
|
||
argument N of the overload is available as "arg<N>". */
|
||
|
||
static void
|
||
print_overload_test (overloaded_instance *instance, FILE *file)
|
||
{
|
||
for (unsigned int i = 0; i < instance->arg_values.length (); ++i)
|
||
fprintf (file, "%sarg%d == %s", i == 0 ? " if (" : "\n && ",
|
||
i, instance->arg_values[i]);
|
||
fprintf (file, ")\n");
|
||
}
|
||
|
||
/* Emit a maybe_code_for_* function for ONAME. */
|
||
|
||
static void
|
||
handle_overloaded_code_for (overloaded_name *oname, FILE *file)
|
||
{
|
||
/* Print the function prototype. */
|
||
fprintf (file, "\ninsn_code\nmaybe_code_for_%s (", oname->name);
|
||
print_overload_arguments (oname, file);
|
||
fprintf (file, ")\n{\n");
|
||
|
||
/* Use a sequence of "if" statements for each instance. */
|
||
for (overloaded_instance *instance = oname->first_instance;
|
||
instance; instance = instance->next)
|
||
{
|
||
print_overload_test (instance, file);
|
||
fprintf (file, " return CODE_FOR_%s;\n", instance->name);
|
||
}
|
||
|
||
/* Return null if no match was found. */
|
||
fprintf (file, " return CODE_FOR_nothing;\n}\n");
|
||
}
|
||
|
||
/* Emit a maybe_gen_* function for ONAME. */
|
||
|
||
static void
|
||
handle_overloaded_gen (overloaded_name *oname, FILE *file)
|
||
{
|
||
unsigned HOST_WIDE_INT seen = 0;
|
||
/* All patterns must have the same number of operands. */
|
||
for (overloaded_instance *instance = oname->first_instance->next;
|
||
instance; instance = instance->next)
|
||
{
|
||
pattern_stats stats;
|
||
get_pattern_stats (&stats, XVEC (instance->insn, 1));
|
||
unsigned HOST_WIDE_INT mask
|
||
= HOST_WIDE_INT_1U << stats.num_generator_args;
|
||
if (seen & mask)
|
||
continue;
|
||
|
||
seen |= mask;
|
||
|
||
/* Print the function prototype. */
|
||
fprintf (file, "\nrtx\nmaybe_gen_%s (", oname->name);
|
||
print_overload_arguments (oname, file);
|
||
for (int i = 0; i < stats.num_generator_args; ++i)
|
||
fprintf (file, ", rtx x%d", i);
|
||
fprintf (file, ")\n{\n");
|
||
|
||
/* Use maybe_code_for_*, instead of duplicating the selection
|
||
logic here. */
|
||
fprintf (file, " insn_code code = maybe_code_for_%s (", oname->name);
|
||
for (unsigned int i = 0; i < oname->arg_types.length (); ++i)
|
||
fprintf (file, "%sarg%d", i == 0 ? "" : ", ", i);
|
||
fprintf (file, ");\n"
|
||
" if (code != CODE_FOR_nothing)\n"
|
||
" {\n"
|
||
" gcc_assert (insn_data[code].n_generator_args == %d);\n"
|
||
" return GEN_FCN (code) (", stats.num_generator_args);
|
||
for (int i = 0; i < stats.num_generator_args; ++i)
|
||
fprintf (file, "%sx%d", i == 0 ? "" : ", ", i);
|
||
fprintf (file, ");\n"
|
||
" }\n"
|
||
" else\n"
|
||
" return NULL_RTX;\n"
|
||
"}\n");
|
||
}
|
||
}
|
||
|
||
void
|
||
print_header (FILE *file)
|
||
{
|
||
fprintf (file, "/* Generated automatically by the program `genemit'\n\
|
||
from the machine description file `md'. */\n\n");
|
||
|
||
fprintf (file, "#define IN_TARGET_CODE 1\n");
|
||
fprintf (file, "#include \"config.h\"\n");
|
||
fprintf (file, "#include \"system.h\"\n");
|
||
fprintf (file, "#include \"coretypes.h\"\n");
|
||
fprintf (file, "#include \"backend.h\"\n");
|
||
fprintf (file, "#include \"predict.h\"\n");
|
||
fprintf (file, "#include \"tree.h\"\n");
|
||
fprintf (file, "#include \"rtl.h\"\n");
|
||
fprintf (file, "#include \"alias.h\"\n");
|
||
fprintf (file, "#include \"varasm.h\"\n");
|
||
fprintf (file, "#include \"stor-layout.h\"\n");
|
||
fprintf (file, "#include \"calls.h\"\n");
|
||
fprintf (file, "#include \"memmodel.h\"\n");
|
||
fprintf (file, "#include \"tm_p.h\"\n");
|
||
fprintf (file, "#include \"flags.h\"\n");
|
||
fprintf (file, "#include \"insn-config.h\"\n");
|
||
fprintf (file, "#include \"expmed.h\"\n");
|
||
fprintf (file, "#include \"dojump.h\"\n");
|
||
fprintf (file, "#include \"explow.h\"\n");
|
||
fprintf (file, "#include \"emit-rtl.h\"\n");
|
||
fprintf (file, "#include \"stmt.h\"\n");
|
||
fprintf (file, "#include \"expr.h\"\n");
|
||
fprintf (file, "#include \"insn-codes.h\"\n");
|
||
fprintf (file, "#include \"optabs.h\"\n");
|
||
fprintf (file, "#include \"dfp.h\"\n");
|
||
fprintf (file, "#include \"output.h\"\n");
|
||
fprintf (file, "#include \"recog.h\"\n");
|
||
fprintf (file, "#include \"df.h\"\n");
|
||
fprintf (file, "#include \"resource.h\"\n");
|
||
fprintf (file, "#include \"reload.h\"\n");
|
||
fprintf (file, "#include \"diagnostic-core.h\"\n");
|
||
fprintf (file, "#include \"regs.h\"\n");
|
||
fprintf (file, "#include \"tm-constrs.h\"\n");
|
||
fprintf (file, "#include \"ggc.h\"\n");
|
||
fprintf (file, "#include \"target.h\"\n\n");
|
||
}
|
||
|
||
auto_vec<FILE *, 10> output_files;
|
||
|
||
static bool
|
||
handle_arg (const char *arg)
|
||
{
|
||
if (arg[1] == 'O')
|
||
{
|
||
FILE *file = fopen (&arg[2], "w");
|
||
output_files.safe_push (file);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
int
|
||
main (int argc, const char **argv)
|
||
{
|
||
progname = "genemit";
|
||
|
||
if (!init_rtx_reader_args_cb (argc, argv, handle_arg))
|
||
return (FATAL_EXIT_CODE);
|
||
|
||
#define DEF_INTERNAL_OPTAB_FN(NAME, FLAGS, OPTAB, TYPE) \
|
||
nofail_optabs[OPTAB##_optab] = true;
|
||
#include "internal-fn.def"
|
||
|
||
/* Assign sequential codes to all entries in the machine description
|
||
in parallel with the tables in insn-output.cc. */
|
||
|
||
md_rtx_info info;
|
||
|
||
if (output_files.is_empty ())
|
||
output_files.safe_push (stdout);
|
||
|
||
for (auto f : output_files)
|
||
print_header (f);
|
||
|
||
FILE *file = NULL;
|
||
unsigned file_idx;
|
||
|
||
/* Read the machine description. */
|
||
while (read_md_rtx (&info))
|
||
switch (GET_CODE (info.def))
|
||
{
|
||
case DEFINE_INSN:
|
||
maybe_queue_insn (info);
|
||
break;
|
||
|
||
case DEFINE_EXPAND:
|
||
queue_expand (info);
|
||
break;
|
||
|
||
case DEFINE_SPLIT:
|
||
case DEFINE_PEEPHOLE2:
|
||
queue_split (info);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
for (auto &info : queue)
|
||
{
|
||
file = choose_output (output_files, file_idx);
|
||
|
||
fprintf (file, "/* %s:%d */\n", info.loc.filename, info.loc.lineno);
|
||
switch (GET_CODE (info.def))
|
||
{
|
||
case DEFINE_INSN:
|
||
gen_insn (info, file);
|
||
break;
|
||
|
||
case DEFINE_EXPAND:
|
||
gen_expand (info, file);
|
||
break;
|
||
|
||
case DEFINE_SPLIT:
|
||
case DEFINE_PEEPHOLE2:
|
||
gen_split (info, file);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
file = choose_output (output_files, file_idx);
|
||
|
||
/* Write out the routines to add CLOBBERs to a pattern and say whether they
|
||
clobber a hard reg. */
|
||
output_add_clobbers (file);
|
||
output_added_clobbers_hard_reg_p (file);
|
||
|
||
for (overloaded_name *oname = rtx_reader_ptr->get_overloads ();
|
||
oname; oname = oname->next)
|
||
{
|
||
handle_overloaded_code_for (oname, file);
|
||
handle_overloaded_gen (oname, file);
|
||
}
|
||
|
||
int ret = SUCCESS_EXIT_CODE;
|
||
for (FILE *f : output_files)
|
||
if (fclose (f) != 0)
|
||
ret = FATAL_EXIT_CODE;
|
||
|
||
return ret;
|
||
}
|